Author Archives: eclupu

MUSKETEER: Machine learning to augment shared knowledge in federated privacy-preserving scenarios

The massive increase in data collected and stored worldwide calls for new ways to preserve privacy while still allowing data sharing among multiple data owners. Today, the lack of trusted and secure environments for data sharing inhibits data economy while legality, privacy, trustworthiness, data value and confidentiality hamper the free flow of data. By the end of the project, MUSKETEER aims to create a validated, federated, privacy-preserving machine learning platform tested on industrial data that is inter-operable, scalable and efficient enough to be deployed in real use cases. MUSKETEER aims to alleviate data sharing barriers by providing secure, scalable and privacy-preserving analytics over decentralized datasets using machine learning. Data can continue to be stored in different locations with different privacy constraints, but shared securely. The MUSKETEER cross-domain platform will validate progress in the industrial scenarios of smart manufacturing and health. MUSKETEER strives to (1) create machine learning models over a variety of privacy-preserving scenarios, (2) ensure security and robustness against external and internal threats, (3) provide a standardized and extendable architecture, (4) demonstrate and validate in two different industrial scenarios and (5) enhance data economy by boosting sharing across domains. The MUSKETEER impact crosses industrial, scientific, economic and strategic domains. Real-world industry requirements and outcomes are validated in an operational setting. Federated machine learning approaches for data sharing are innovated. Data economy is fostered by creating a rewarding model capable of fairly monetizing datasets according to the real data value. Finally, Europe is positioned as a leader in innovative data sharing technologies.

Luca Maria Castiglione

Luca joined the group as PhD student on HiPEDS in October 2018. He received his MSc in Computer Science and Engineering from University of Napoli Federico II, defending his thesis entitled “Negotiation of traffic junctions over 5G networks”. The thesis work has been carried out at Ericsson, Gothenburg (Sweden), within a joint project between University of Napoli Federico II, Chalmers University of Technology and Ericsson.

He strongly believes in open source development and he currently is a mentor within the Open Leadership Programme offered by Mozilla.

His research interests are on the edge between cybersecurity and control engineering. In particular, his studies aim to investigate resilience of networked systems and industrial plants against cyberattacks.

You can also find him on Linkedin.

Kenneth Co

Kenny joined the group as a PhD student in April 2018. He received an MSc in Machine Learning from Imperial College London and an MA in Mathematics from Johns Hopkins University.

His general interests are in machine learning, cryptography, and mathematics. His current research is on the security of machine learning algorithms, primarily adversarial machine learning. He is also interested in health or lifestyle optimization, and is very much into enjoying good food.

Find him on LinkedIn.

Javier C. Cano

Javi joined the group as a PhD student in May 2018. He received his BEng and MEng in Telecommunications Engineering and his MRes in Multimedia and Communications from University Carlos III of Madrid (Spain).

He is currently interested in the study of Machine Learning vulnerabilities in adversarial environments. Also, he is investigating the operation of these systems when they have been partially compromised.

You can also find him on LinkedIn.

 

 

Ensuring the resilience of WSN to Malicious Data Injections through Measurements Inspection

Malicious data injections pose a severe threat to the systems based on Wireless Sensor Networks (WSNs) since they give the attacker control over the measurements, and on the system’s status and response in turn. Malicious measurements are particularly threatening when used to spoof or mask events of interest, thus eliciting or preventing desirable responses. Spoofing and masking attacks are particularly difficult to detect since they depict plausible behaviours, especially if multiple sensors have been compromised and collude to inject a coherent set of malicious measurements. Previous work has tackled the problem through measurements inspection, which analyses the inter-measurements correlations induced by the physical phenomena. However, these techniques consider simplistic attacks and are not robust to collusion. Moreover, they assume highly predictable patterns in the measurements distribution, which are invalidated by the unpredictability of events. We design a set of techniques that effectively detect malicious data injections in the presence of sophisticated collusion strategies, when one or more events manifest. Moreover, we build a methodology to characterise the likely compromised sensors. We also design diagnosis criteria that allow us to distinguish anomalies arising from malicious interference and faults. In contrast with previous work, we test the robustness of our methodology with automated and sophisticated attacks, where the attacker aims to evade detection. We conclude that our approach outperforms state-of-the-a
rt approaches. Moreover, we estimate quantitatively the WSN degree of resilience and provide a methodology to give a WSN owner an assured degree of resilience by automatically designing the WSN deployment. To deal also with the extreme scenario where the attacker has compromised most of the WSN, we propose a combination with software attestation techniques, which are more reliable when malicious data is originated by a compromised software, but also more expensive, and achieve an excellent trade-off between cost and resilience.

 

Download Thesis from here. 

Determining Resilience Gains From Anomaly Detection for Event Integrity in Wireless Sensor Networks

Vittorio P. Illiano, Andrea Paudice, Luis Muñoz-González, and Emil C. Lupu. 2018. Determining Resilience Gains From Anomaly Detection for Event Integrity in Wireless Sensor Networks. ACM Trans. Sen. Netw. 14, 1, Article 5 (February 2018), 35 pages. DOI: https://doi.org/10.1145/3176621

Abstract: Measurements collected in a wireless sensor network (WSN) can be maliciously compromised through several attacks, but anomaly detection algorithms may provide resilience by detecting inconsistencies in the data. Anomaly detection can identify severe threats to WSN applications, provided that there is a sufficient amount of genuine information. This article presents a novel method to calculate an assurance measure for the network by estimating the maximum number of malicious measurements that can be tolerated. In previous work, the resilience of anomaly detection to malicious measurements has been tested only against arbitrary attacks, which are not necessarily sophisticated. The novel method presented here is based on an optimization algorithm, which maximizes the attack’s chance of staying undetected while causing damage to the application, thus seeking the worst-case scenario for the anomaly detection algorithm. The algorithm is tested on a wildfire monitoring WSN to estimate the benefits of anomaly detection on the system’s resilience. The algorithm also returns the measurements that the attacker needs to synthesize, which are studied to highlight the weak spots of anomaly detection. Finally, this article presents a novel methodology that takes in input the degree of resilience required and automatically designs the deployment that satisfies such a requirement.