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Detecting Malicious Data Injections in Wireless Sensor Networks: a
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Wireless Sensor Networks are widely advocated to monitor environmental parameters, structural integrity
of the built environment and use of urban spaces, services and utilities. However, embedded sensors are

vulnerable to compromise by external actors through malware but also through their wireless and physical

interfaces. Compromised sensors can be made to report false measurements with the aim to produce inap-
propriate and potentially dangerous responses. Such malicious data injections can be particularly difficult

to detect if multiple sensors have been compromised as they could emulate plausible sensor behaviour such
as failures or detection of events where none occur. This survey reviews the related work on malicious data

injection in wireless sensor networks, derives general principles and a classification of approaches within this

domain, compares related studies and identifies areas that require further investigation.

Categories and Subject Descriptors: K.6.5 [Management of Computing and Information Systems]:
Security and Protection—Unauthorised Access

General Terms: Security, Algorithms, Measurement

Additional Key Words and Phrases: Wireless Sensor Networks, Security, Correlation

1. INTRODUCTION
Wireless Sensor Networks (WSNs) are an attractive solution to the problem of col-
lecting data from physical spaces, thanks to their flexibility, low cost and ease of de-
ployment. Applications of WSNs include a broad variety of tasks in both shared and
personal environments. In shared environments, applications include monitoring in-
frastructures such as the water network, improving road traffic, monitoring environ-
mental parameters and surveillance. In personal environments, applications include
monitoring homes for energy efficiency, user activity such as exercise and sleep, and
physiological parameters for healthcare through both wearable and implantable sen-
sors.

In some aspects, WSNs are similar to traditional wired and wireless networks, but
they also differ in some others, such as the sensors’ limited computational and power
resources. Sensors need to be cheap, be physically small, communicate wirelessly and
have low-power consumption whether to monitor a human body or a large flood plain
and therein lie their main advantages. But these characteristics are also their main
limitations as they lead to more frequent failures, poor physical protection, limited de-
gree of redundancy and processing, and limited ability to carry out complex operations.

Wireless sensors carry a much higher risk of being compromised. Their deployments
are often unattended and physically accessible, and use of tamper-resistant hardware
is often too expensive. The wireless medium is difficult to secure and can be com-
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promised at all layers of the protocol stack. Cryptographic operations and key man-
agement consume valuable computational and power resources and cannot provide a
solution once a node has been compromised. Yet, despite this, WSNs are increasingly
used to monitor critical infrastructures and human health where malicious attacks
can lead to significant damage and even loss of life.

Faced with the challenge of securing WSNs, researchers have proposed new security
solutions for these platforms. The literature is rich and we can only cite a few examples
such as [Karlof and Wagner 2003; Perrig et al. 2004; Du et al. 2005; Liu and Ning
2008; Khan and Alghathbar 2010]. Most studies focus on proposing solutions against
physical-level and network-level threats, such as jamming attacks, attacks against the
routing protocols, confidentiality and integrity of the data in transit. Another body of
work is that of software attestation, that assesses the node integrity and in particular
checks that the nodes run the expected software [Seshadri et al. 2004; Park and Shin
2005; Seshadri et al. 2006; Zhang and Liu 2010].

Despite such solutions, many attacks remain possible against wireless sensor nodes.
For example an attacker may compromise a node through its physical interfaces, or
tamper with the node hardware itself in order to introduce wrong measurements in the
network. This would defeat many of the solutions presented in the literature as cryp-
tographic material present on a compromised sensor would (in the absence of trusted
hardware) be available to the attacker. Even when the sensors are hard to reach or to
tamper with, an attacker may also seek to compromise the measurements by locally
manipulating the sensed environment to induce malicious readings, for example using
a lighter to trigger a fire alarm. We refer to all this kind of attacks as malicious data
injections. Their aim is to compromise the mission of the WSN by producing a picture
about the sensed phenomenon, which is different from the real one with potentially
devastating effects. In particular, an attacker may seek to:

— elicit an inappropriate system response. For example, triggering an overload
on a power grid, leading to partial shutdown.

— masking a desired system response. For example, silencing an intrusion alarm.

Protecting from such attacks becomes essential because of their potential impact
and this survey focuses on solutions proposed that could address this problem. The
main challenge for detecting malicious data injections is finding sufficient evidence of
the attack. A possible approach is to look for evidence of tampering with the sensor
itself through software attestation, as mentioned above. However, software attesta-
tion is difficult to deploy in practice (e.g. because of timeliness constraints and device
hardware restrictions [Castelluccia et al. 2009]). Attacks that locally modify the sensed
environment are also still possible. Another approach is to look for evidence of changed
traffic patterns in the communication between the sensors e.g., through traffic analy-
sis [Buttyan and Hubaux 2008]. Whilst effective for detecting network-level attacks,
in particular on routing, such approaches often cannot detect malicious data injections
since an attacker may modify the values reported by the sensors without changing the
traffic patterns of the communications between sensors.

For these reasons, we focus in this article on techniques that look for evidence of
compromise in the sensor measurements themselves, regardless of how they may have
been compromised. Thus, we include in the scope of this survey techniques that per-
form data analyses on such measurements to detect malicious interference. In addi-
tion, we include papers that aim to detect generic anomalies in WSNs, but that are
still based on the collected measurements. In contrast, anomaly-based techniques that
operate on network parameters such as packet transmission rate, packet drop rate,
transmission power etc., are beyond the scope of this survey. Indeed, a key aspect of
the detection of malicious data injections is the construction of the data expectation
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model, i.e. the model that allows to define expectations about the sensors’ measure-
ments. In this context, anomalies arise in the correlation structures that are natively
present in the data itself, which cannot be found in network parameters, and may
occur without any disruption to the network parameters.

All the papers reviewed in this survey assume that the attacker aims to cause no-
ticeable undesired effects and injects measurements that differ in some detectable way
from the correct values that should be reported at that point in time and space. This
is the assumption that enables the use of data analysis to detect data injections. How-
ever, note that the real value that should be reported by compromised sensors is not
observable directly. Instead, it can only be characterised from indirect information
such as values reported by other sensors, which may or may not be sufficient to de-
tect the compromise. The problem is even more difficult as the indirect information
may itself not be correct due to the presence of faults or naturally occurring events.
Faults refer to any kind of genuine errors, transient or not, and may be difficult to dis-
tinguish from a malicious injection. Events refer to substantial changes in the sensed
phenomenon like a fire, an earthquake etc. We refer to the problem of distinguishing
malicious data injections from events and faults as diagnosis and review the state-of-
the-art approaches to the problem. Another cause for unreliable indirect information
is the presence of colluding sensors i.e. when multiple compromised sensors produce
malicious values in a coordinated fashion. In such scenarios the attacker’s leverage on
the system increases, and opens the possibilities to new and more effective attacks.

Detecting and diagnosing malicious data injections is a subset of the more general
problem of ensuring the integrity of the sensed data, which may have been corrupted
by failures or in other ways. This is reflected in the studies surveyed, where many
techniques designed for, e.g., detecting faulty sensors or faulty data are also advocated
for malicious data injections. Comparatively, only a small proportion of the papers
explicitly focus on malicious data injections. However, there is a significant difference
between faults and maliciously injected data since the latter is deliberately created
in sophisticated ways to be difficult to detect. Therefore, there is a need for a survey
that (1) analyses the achievements and shortcomings of the work targeted to malicious
data injections and that also (2) reviews the state-of-the art techniques proposed for
non-malicious data compromise and evaluates their suitability to this problem.

Within the context of WSN, the applicable state of the art studies broadly follow
two types of approaches: anomaly detection techniques starting from about [2005]
([Tanachaiwiwat and Helmy 2005]) and trust management techniques from about
[2006] ([Zhang et al. 2006]). We review the state of the art for both approaches and
compare the studies surveyed according to their:

— adopted approach
— ability to detect malicious data injections
— results and performance

The remainder of this article is organised as follows. In Sect. 2, we describe existing
surveys related to the one we present here. In Sect. 3 we recap concepts useful for
understanding the rest of the paper. In Sect. 4 we analyse possible ways of defining an
expected behaviour for sensors measurements and analyse the different approaches
adopted in the state-of-the art techniques. In Sect. 5 we analyse the state-of-the art
detection algorithms. In Sect. 6 we describe two aspects that are important to tackle
malicious data injections beyond detection: diagnosis and characterisation of the at-
tack. In Sect. 7 we give comparison tables for the techniques surveyed and their ex-
perimental results, together with a brief discussion. Finally, in Sect. 8, we present our
conclusions and the open issues that emerged from this study.
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2. RELATED SURVEYS
To the best of our knowledge, there are no previous surveys of techniques to detect
malicious data injections in WSNs. Several surveys are however related and we discuss
them in this section.

Boukerche et al. [2008] analyse techniques for secure localisation algorithms in
WSNs. There are some similarities between malicious data injections and attacks on
localisation systems, since the sensors’ location can be regarded as a particular phys-
ical phenomenon being sensed. However, many aspects of the techniques described
in [Boukerche et al. 2008], are specific to the localisation problem. In particular, con-
straints on the topology, the radio transmission power and delay provide a clear crite-
rion to check the consistency of the information reported by the sensors. In contrast,
we focus on techniques that do not require a-priori knowledge of the physical phenom-
ena monitored to check data consistency but examine and infer correlations from the
data itself.

Rajasegarar et al. [2008] review eleven state-of-the-art papers about anomaly de-
tection in WSNs. Although they focus on detecting intrusions, the survey also covers
eliminating erroneous readings and reducing power consumption. The detection algo-
rithms surveyed consider sensor measurements as well as network traffic and power
consumption. In contrast, we focus on a more specific target: the detection of malicious
data injections. We cover a broader spectrum of papers since we include techniques
other than anomaly detection, describe further steps for detecting malicious data and
include a significant amount of literature published since then.

Xie et al. [2011] survey anomaly detection in WSNs, with a focus on the WSN ar-
chitecture (Hirearchical/Flat) and the detection approach (statistical, rule based, data
mining etc.). They describe the detection procedure in a similar way to us: definition
of a “normal profile”, which we refer to as normal or expected behaviour, and test to
decide whether it is an anomaly or not, or to what extent. However, our survey is
structured based on the approach to both the definition of the normal behaviour and
the detection based on it, while [Xie et al. 2011] focus only on the latter. This choice
allows us to pinpoint the motivation for the use of a particular detection technique,
based on how the data normally looks like. Moreover, the diagnosis process that clas-
sifies an anomaly as an attack is not analysed in [Xie et al. 2011] whereas it forms an
important part of this survey.

Several surveys discuss trust management for security in WSNs (e.g. [Lopez et al.
2010; Özdemir and Xiao 2009; Sang et al. 2006]). However, they focus on attacks con-
ducted through the network layer, while malicious data injections are given little at-
tention. Yu et al. [2012] lists all the threats that can be mitigated by trust manage-
ment, including “Stealthy attacks” – a kind of malicious data injection – but these are
not analysed in detail. Similarly, Zahariadis et al. [2010a] build a taxonomy of trust
metrics, which includes consistency of reported values/data, but they focus mostly on
the other network-related metrics. Also Shen et al. [2011] survey defensive strategies
against attacks to the network layer. In particular, such strategies are derived from
game theory and take into account the strategies that can be adopted by the attacker
to balance the profit and loss of reputation coming from the attack; in our survey in-
stead, we focus on techniques to assign and maintain such reputation.

The closest survey to the one presented here is [Jurdak et al. 2011]. It describes
anomaly detection strategies for detecting faults due to environmental factors (e.g. ob-
structions near the sensor) or node hardware/software. Their description of anomaly
detection is similar to ours but the two surveys differ notably in the nature of the
anomalies considered: attacks in our case, faults in theirs. Jurdak et al. [2011] also
claim that anomalies can be detected by spatial or temporal comparisons between sen-
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sors, since it is unlikely that many sensors will exhibit a calibration skew or failure
at the same time (assuming there are no group failures). This assumption considers
anomalies (faults) as independent but does not hold in the presence of malicious data
injections, in particular when there is collusion between the compromised sensors.

3. PRELIMINARIES
We describe in the following how sensors measurements are generally gathered in a
WSN. We also introduce the two approaches used to detect malicious data injections
so far: anomaly detection and trust management.

3.1. Data Aggregation Schemes and Their Consequences
The typical workflow of a WSN starts with measuring a physical phenomenon through
sensing devices connected to a wireless node that propagates the measurements
through the network towards data sinks. Measurements collected and aggregated by
data sinks (e.g., base stations) can then be interpreted or transmitted to a remote
station. However, data can also be aggregated in the network by the intermediate
transmitting nodes, with many possible variations on the aggregation architecture.
The choice between the different schemes is based on criteria that optimise power ef-
ficiency, number of devices, coverage of the physical space etc. Finding the optimal
architecture based on such criteria remains an important research challenge.

Early work considered that all raw measurements are collected at the base station,
which performs data fusion and other computations [Shepard 1996; Singh et al. 1998].
Later on, especially after the introduction of the LEACH protocol [Heinzelman et al.
2000], architectures became increasingly hierarchical. LEACH applies a one-level hier-
archy where sensors are organised in clusters and communicate with the cluster-head,
which, in turn, communicates with the base station, as shown in Fig. 1. Cluster-based
protocols, and especially those where the clusters change dynamically in time [Heinzel-
man et al. 2000], have proven to be more energy efficient when communication with
the base station requires multi-hop transmissions [Heinzelman et al. 2000].

Fig. 1. LEACH measurements collection architecture.

The one-level hierarchy introduced in LEACH can be generalised to tree-based struc-
tures as described in [Fasolo et al. 2007]. Intermediate tree nodes may simply merge
the packets generated by different sources into a single packet without processing the
data. This is referred to as in-network aggregation without size reduction [Fasolo et al.
2007]. Alternatively, they process the sensor measurements by applying aggregation
operators (e.g. mean, minimum, maximum), which is referred to as in-network aggre-
gation with size reduction [Fasolo et al. 2007]. So, cluster heads assume the burden of
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the additional computation in order to minimise the data transmitted. In essence, this
trades the power costs of computation for those of communication, but since in WSNs
communication consumes much more power, the trade is usually favourable.

Information about the WSN architecture and where data aggregation is carried out,
is important for allocating the detection task to the WSN nodes. For instance, if in-
network aggregation with size reduction is used, the base station cannot analyse all
the measurements and the aggregating nodes must assist the base station in the de-
tection task. In this case the integrity of the aggregation process at these nodes must
also be ascertained [Przydatek et al. 2003; Ganeriwal and Srivastava 2004; Roy et al.
2014].

3.2. Relationship to Anomaly Detection and Trust Management
Detection of malicious data injections has been addressed with two main approaches
so far: anomaly detection (e.g., [Tanachaiwiwat and Helmy 2005; Liu et al. 2007; Sun
et al. 2013]) and trust management (e.g., [Atakli et al. 2008; Bao et al. 2012; Oh et al.
2012]). While anomaly detection defines normal behaviours to infer the presence of
anomalies, trust management evaluates the confidence level (trustworthiness) that a
sensor’s behaviour is normal. Compromised sensors are then expected to get low trust
values when they deviate from their expected behaviour. Although anomaly detection
is also based on the definition of an expected behaviour –“Anomaly detection refers
to the problem of finding abnormalities in the data that do not conform to expected
behaviour” Chandola et al. [2009]– the two approaches differ in how deviations are
interpreted. In trust management, the sensors measurements are analysed with the
granularity of a sensor, and each sensor has a trust value that is incrementally up-
dated in time. Anomaly detection approaches, instead, can be applied with no restric-
tions in granularity from the single measurement to the whole system, and generally
work by defining a boundary for expected behaviour such that everything outside that
boundary is abnormal.

Given the similarities and differences between the two approaches, we structure
the following two sections as follows: in the next section we describe how to gather
information about expected data, regardless of whether it is for anomaly detection or
trust management. In Sect. 5 instead, we describe how to detect deviations from the
expected data, treating anomaly detection and trust management separately.

4. MODELLING EXPECTED DATA
In our context, expected data refers to a set of properties characterising the measure-
ments that are free of malicious injections. Given that no previous surveys focus on
this issue, we start by introducing a generic formulation of WSN sensing. This enables
us to analyse different models for the expected data and describe the related work with
a coherent terminology as the terms used often differ from one article to another.

4.1. A Characterisation of the Problem
We focus on interpreting the data and abstract from implementation-related issues
such as synchronisation between sensors, and network related issues such as packet
loss or delays. We consider a deployment region D, in which a set of N sensors are
placed. Every sensor measures a physical attribute such as temperature, wind, wa-
ter quality, power, gas flows. The sensors’ measurement process is characterised by a
degree of uncertainty, which may be due to noise, faults and also malicious data injec-
tions. It is desirable to remove this uncertainty, so we introduce an ideal function ϕ,
which represents the value of a sensor’s reading in the absence of any source of un-
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certainty. The independent variables of such function are the point in space s and the
time instant t to which the readings correspond, as shown in Eq.1:

ϕ(s, t) s ∈ D, ∀t (1)

We refer to this function as the physical attribute function. The reading produced at
time t by a generic sensor i, deployed at position si, is some approximation of the
physical attribute function evaluated at (si, t). A generic sensor’s reading can then be
modelled as a function Si, that adds a generic measurement error ε(si, t) to the physical
attribute, which may change with time and space. Eq. 2 defines the function Si:

Si(t) = ϕ(si, t) + ε(si, t) i ∈ 1, ..., N (2)

Note that the sensors’ readings are the only observable quantities; both the physical
attributes and the measurement errors are not observable directly. When malicious
data injections occur, some of the sensors’ readings also become unobservable, since
the attacker substitutes fabricated measurements for the real ones. There is then the
need to describe the real measurements with related information from some observ-
able quantities. This process is effective if such related information allows us to dis-
criminate injections and is itself not susceptible to injections.

Describing the unobservable real measurement in terms of observable properties is
a modelling process, that makes assumptions about how data can be described. For
instance, the measurements produced by a sensor can be modelled as samples from a
normal distribution [Zhang et al. 2006]. Assuming compromised nodes do not produce
data compliant with a normal distribution, the model can then discriminate compro-
mised nodes [Zhang et al. 2006].

The relation that links the problem to a model is a one-to-many relation. Different
models of the same problem are not equivalent and choosing a good model is essential
for good performance. In particular, a good model should be characterised by:

— Accuracy – No model is perfect and every model is in fact an approximation. An
accurate model minimises the approximation error.

— Adaptability – Physical attributes measured by the sensors change in time. As a
consequence, models should adapt to the dynamically changing environment.

— Flexibility – Good models should be applicable in a flexible way, regardless of the
application. Such models should abstract as many details as possible and capture
only those properties that are needed.

These desirable characteristics conflict with each other: accuracy may be better
achieved with context-specific details, which limit flexibility and compromise adapt-
ability. A particular adaptability requirement which significantly affects accuracy and
flexibility is the sensors’ mobility, as when sensor nodes migrate to new locations, pre-
vious expectations are invalidated. Indeed sensor migrations correspond to a change
in si in Eq. 2, which potentially changes all the measurements time series, leaving
sensor specific noise as the only invariant.

Support to Mobility. Even though mobility is an aspect that is not directly addressed
in the detection of malicious data injections, some techniques are more suited to sup-
port mobile sensors than others. In particular, anomaly detection techniques that com-
pare the measurements within a neighbourhood without considering past behaviour
(e.g. [Handschin et al. 1975; Ngai et al. 2006; Liu et al. 2007; Wu et al. 2007; Guo et al.
2009]), can generally accomodate mobility, since for every time instant, new expecta-
tions are extracted. However, such techniques also need to become aware of topology
changes in the presence of mobility.
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Trust-management techniques with exchanges of trust information (e.g., [Bao et al.
2012; Huang et al. 2006; Ganeriwal et al. 2003; Momani et al. 2008]) are also suited
for mobility, since a sensor i which migrates to a new area and becomes a neighbour
of j, can benefit of recommendations from sensors which have been j’s neighbours in
the past [Zahariadis et al. 2010b]. So far, exchanges of trust informations have been
considered without investigating the effects of mobility, therefore sensor i will gener-
ally maintain indirect information about sensor j only if there is interaction between i
and j, and i cannot observe j’s behaviour (e.g., it is not in the wireless communication
range). When sensors are mobile instead, even if i and j never interacted, they may in-
teract in the future if they get closer. Only at that time, recommendations for j become
of i’s interest, and a criterion to request such recommendations is needed.

The existing studies analysed in the remainder of this work, by and large, ignore
mobility aspects. We conclude, in light of the considerations above, that more work is
required to deal with the problems arising from the sensors’ mobility.

4.2. Exploiting Correlation
Since the original measurements substituted with fabricated ones cannot be observed
directly, they need to be characterised indirectly with related information. The rela-
tionship between two pieces of information is a correlation, which can be calculated
online, with historical data, or modelled a-priori. In either case, coexistence of genuine
and compromised measurements may cause disruptions in the correlation, assuming
that the correlations have not changed between the moment when they are calculated
and the moment when they are used.

We refer here to correlation in a broad sense, meaning that there is some kind of
continuous dependency, as opposed to Pearson’s correlation coefficient, which is the
most commonly used correlation metric. Referring to E, µ and σ as the expected value,
the mean and the standard deviation respectively, the Pearson correlation coefficient
ρXY between two random variables X and Y is given by:

ρXY =
cov(X,Y )

σXσY
=
E[(X − µX)(Y − µY )]

σXσY
(3)

Note that this coefficient measures only linear dependency between two variables,
while non-linear dependencies may be missed.

In Wireless Sensor Networks we can generally consider correlations across three
different domains: temporal, spatial and attribute domain [Rassam et al. 2013].

— Temporal correlation is the dependency of a sensor’s reading on its previous
readings. It models the coherence in time of the sensed physical process.

— Spatial correlation is the dependency in readings from different sensors at the
same time. It models the similarities in how the sensed phenomenon is perceived
by different sensors.

— Attribute correlation is the dependency in readings that are related to different
physical processes. It models physical dependencies among heterogeneous physical
quantities such as temperature and relative humidity.

Usually a combination of these different kinds of correlation is used. We now analyse
how they contribute to the definition of expected data.

4.3. Temporal Correlation
Variations in time of the sensed data can be modelled as a random process [Boukerche
2009], where the random variables at different time are correlated. As Eq. 2 shows,
the variation of a sensor’s measurements in time depends on both the variations in-
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troduced by the physical attribute and the measurements’ error. The variation of the
physical attribute in time is subject to constraints, such as the presence of gradual
changes, or the alternation of some patterns, since the phenomenon observed usually
follows the laws of physics. So, if the measurements are gathered with sufficiently
high frequency, consecutive measurements would be subject to similar constraints.
This simple observation justifies a procedure that identifies errors (including mali-
cious injections) when temporal variations do not respect these constraints. However,
there are two main difficulties in applying this observation to assess deviations: the
time evolution of the process is subject to uncertainty factors and the measurements
are subject to noise.

When using Kalman Filters [Kalman 1960] to model time series, these two factors
are known respectively as process noise and measurement noise. The measurement
noise is typically modelled as a Gaussian process. The process noise, instead, comes
from the imperfections of the model used to describe the process dynamics. For exam-
ple, when modelling the process as a discrete Markov process, the value at time t1 can
be written as:

ϕ(t1) = F (ϕ(t0)) + w(t0) (4)

where F models the expected evolution of the time process and w is the process noise.
The use of a Markovian process, modelled with a Kalman filter, forms the basis of the

Extended Kalman Filter (EKF) based algorithm by Sun et al. [2013]. Here, each sensor
builds up a prediction for its neighbours as a function of the neighbours’ previous
reading. The difference between the predicted and the actual value forms a deviation
that is used to detect malicious data injections. However, the authors point out that
an attacker can elude the EKF algorithm by introducing changes that are sufficiently
small. To address this shortcoming, the authors apply the CUSUM GLR algorithm,
which considers the cumulative deviation across more time samples and tests it to be
zero-mean. This property, makes it more difficult for attackers to introduce deviations
that achieve their goal.

[Subramaniam et al. 2006] also define expected data with temporal correlation.
Here, the authors fit the Probability Density Function (PDF) of the measurements in-
side a temporal window, through kernel density estimators. Given a new measurement
p, the PDF gives information about the expected number of values falling in [p−r, p+r]
(with parameter r dependent on the application).

4.4. Spatial Correlation
In the presence of sudden events, the dynamics of a physical process can change
rapidly. Often detecting such events, such as a forest fire, a volcanic eruption, a car-
diac attack is the very purpose of the WSN. However, the occurrence of the event may
disrupt temporal correlations, giving rise to false anomalies. Nevertheless, different
sensor nodes generally are affected by the event and produce measurements that are
spatially correlated to the event source: as a consequence, the measurements of dif-
ferent sensors are correlated during the manifestation of the event [Boukerche 2009].
This phenomenon is known as spatial correlation.

Several techniques make use of spatial correlations by relating the measurements
from different sensors in the same time interval – this is equivalent to fixing t in Eq.
2 and letting the parameter i vary. The most widespread spatial correlation model is
also the simplest: it assumes that all sensors would produce the same measurements
in the absence of errors and noise i.e., they measure the same value, and we refer to
this model as spatially homogeneous [Zhang et al. 2006; Ngai et al. 2006; Wu et al.
2007; Liu et al. 2007; Bettencourt et al. 2007]. In terms of the physical attribute model

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



A:10 V.P. Illiano and E.C. Lupu

given in Eq. 1, ϕ(s, t) is actually a function of time only. In this scenario, the sen-
sors’ measurements can be described by a Gaussian distribution. This is because they
are independent observations of random variables with a well-defined expected value
and well-defined variance, and according to the central limit theorem their values will
be approximately normally distributed [Rice 2007]. Detecting sensors with abnormal
readings becomes then a simple matter of detecting deviations from the spatial mea-
surements’ distribution and the accuracy of the distribution estimation increases with
the number of sensors.

The homogeneous model is suitable only for regions of space which are small enough
and free of obstacles. However, when the deployment topology and characteristics of
the physical phenomena violate the homogeneity assumption, the spatial propagation
rules can still induce spatial correlations. In many applications, such propagation can
be assumed monotonic [Guo et al. 2009]. This implies that the values of the physical
attribute at a point in space, should either increase or decrease as the distance from
that point increases. For example, when monitoring for forest fires the temperature
decreases monotonically as the distance from the fire increases. To ascertain whether
this property holds, Guo et al. [2009] divide the deployment space into sections, called
faces. For each face, the authors construct a “distance sequence”, corresponding to the
sequence of sensors ordered by the distance from that face. While sensing the phe-
nomenon, the sensors readings are sorted to generate the estimated sequence, which is
then compared to all possible distance sequences, as shown in Fig. 2. The sensors mea-

Fig. 2. Detection of measurements which do not comply with the monotonicity assumption, from [Guo et al.
2009].

surements are consistent with the expectation if the estimated sequence corresponds
exactly to one of the distance sequences. This condition is then relaxed to cope with
noisy measurements which degrade the validity of the monotony assumption, but the
main factor undermining its validity is the presence of multiple simultaneous events
[Guo et al. 2009].

Instead of considering a strict assumption like the monotonicity of the measure-
ments, it is possible to model correlations between the sensors’ readings as a function
of their spatial positions. An example of such a model is the variogram, defined as
the variance of the difference between values of a physical phenomenon at two lo-
cations. In our notation, the variogram between two points s1 and s2 is defined as
var(ϕ(s1, t) − ϕ(s2, t)). When the physical phenomenon is assumed to be isotropic, the
variogram is expressed as a function of the distance only and Zhang et al. [2012] have
applied it, to compute an expected measurement as a function of the measurements
from other sensors. Note that in the presence of obstacles, the variogram is not only a
function of the distance, but also depends on the absolute positions.

Rather than considering distances between sensors, spatial correlation can be cal-
culated as a function of the sensor values themselves. This choice caters for sensors
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at the same distance, but subject to different noise or obstacles in space. However,
it comes at the price of correlation updates when sensors are mobile. For example,
Sharma et al. [2010] express a sensor’s measurement as a linear combination of the
measurements from the other sensors, extract the function’s parameters and derive
expected sensor readings. Dereszynski and Dietterich [2011] instead, derive expected
readings by fitting the joint probability distribution of the measurements from N sen-
sors, after assuming it is an N -variate Gaussian distribution. Note that this approach
also implicitly assumes a linear model, as the covariance between two random vari-
ables captures linear dependencies (we have mentioned in Sect. 4.2 that this is true
for the Pearson correlation coefficient, which is just a normalisation of the covariance
index).

Not infrequently, spatial correlation is used in conjunction with temporal correla-
tion, since they capture different kinds of deviations. For example, Bettencourt et al.
[2007], propose an outlier detection technique based on two kinds of differences: be-
tween a sensor’s reading and its own previous reading (temporal correlation) and be-
tween readings of different sensors at the same time (spatial correlation). A distribu-
tion for both differences is used to check if data samples are statistically significant as
related to the temporal domain as well as to the spatial domain.

4.5. Attribute Correlation
In the same WSN, sensors observing different physical attributes such as light, vi-
brations, temperature etc., may coexist. Some of these attributes may be correlated
because of the physical relationship between them e.g., temperature and relative hu-
midity. Commonly, at every deployment location, si different sensors in charge of mea-
suring different physical processes are connected to a single sensor node. As described
by Eq. 5, for a fixed point in space and time we have a set of A physical attributes. We
define attribute correlation as the correlation between them.

ϕa(s, t) a ∈ 1, ..., A (5)

We expect attribute correlations to also be observable in the measurements reported
by the sensor nodes. Note, however, that attribute correlations between sensors belong-
ing to the same node are not informative as an attacker who has compromised a node
may tamper with all the measurements collected on that node. However, attribute-
based expectations are very useful in conjunction with spatial correlations, when spa-
tial redundancy is limited. For example, body sensor networks for healthcare have lim-
ited redundancy since it is impractical to cover the patient with several sensors. We
can then still exploit correlation among different physiological values (the attributes)
measured by different sensor nodes.

An example in the healthcare domain is presented by Salem et al. [2013], who exploit
spatial-attribute correlations together with temporal correlations. Based on a Discrete
Wavelet transform, they decompose the attribute signals into average and fluctua-
tion signals. Abrupt temporal changes in the energy of the fluctuation signal are de-
tected by a Hampel filter, which flags outlying attributes. This technique has been
proposed for fault-tolerant event-detection, based on the observation that multiple at-
tributes are expected to be flagged simultaneously in the presence of an event, due to
their attribute correlations. Then, if the minimum number of outlying attributes is not
reached, the sensors reporting the outlying readings are considered faulty. However, in
the context of malicious data injections, this technique would not prevent an attacker
to deliberately inject measurements that subvert the event-detection.
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Table I. Correlation Types

Correlation
Type Information Captured Variations

Temporal corr(ϕa(s, t1), ϕa(s, t2))
— Time-series evolution model
— Time memory (the maximum value of W for

which the correlation is modelled)

Spatial corr(ϕa(s1, t), ϕa(s2, t))

— Spatial model, e.g. homogeneous, monotonic,
variogram, linear dependency

— Correlation variational model, e.g. distance-
dependent, sensors-dependent, fixed

— Neighbourhood selection criterion

Attribute corr(ϕa1 (s, t), ϕa2 (s, t)) — Correlation extraction process, e.g. from physi-
cal laws, temporal/spatial analysis etc.

4.6. Overview of Techniques for Extracting Expected Data
In the previous sections we have analysed different types of correlations, the informa-
tion they capture, and variations in the exploitation of the same correlation across the
techniques proposed in literature. In Table I we summarise this analysis.

5. DETECTING DEVIATIONS FROM EXPECTED DATA
Expectations about the actual measurements can be used to calculate the deviation
of the reported measurements from them. Both anomaly detection and trust man-
agement require an expectation, but they use different criteria to cope with abnor-
mal data. Specifically, anomaly detection uses the expectation to discriminate between
anomalous and normal data. Trust management instead, uses a criterion to map the
deviation from expected data to a trust value. Since the two techniques differ in how
they interpret deviation, we will consider them separately in this section.

5.1. Anomaly Detection Techniques
Anomaly detection is a method to characterise data as normal or anomalous. In con-
trast to Rajasegarar et al. [2008] who consider outlier detection and anomaly detection
as equivalent, we instead consider outlier detection as one of the techniques belonging
to the anomaly detection category. The reason is that outlier detection identifies the
samples that are unlikely to manifest. However, the measurements could be anoma-
lous with respect to other criteria, that cannot be reduced to the problem of finding
outliers. Consider for example the case where a sensor is experiencing a stuck at fault,
i.e., it always produces the same measurement. An outlier detection technique applied
on a subset of the last measurements from that sensor will detect no outlier. However,
an anomaly still exists and could be detected by considering, for instance, the low vari-
ance in the measurements’ distribution. To clarify this aspect, we present statistical
tests for anomaly detection and highlight their differences with more traditional out-
lier detection techniques. Then we delve into techniques for outlier detection, which is
still the most commonly adopted technique for anomaly detection.

5.1.1. Statistical Tests. Techniques based on statistical tests assume a probabilistic
data distribution. Real data is then checked against this distribution to verify its com-
pliance to it. Techniques based on statistical tests are more general than outlier detec-
tion because they check the compliance of both outliers and non-outliers to the distri-
bution whereas outlier detection focuses on the classification of single data samples.
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For example, Rezvani et al. [2013] use a technique based on statistical tests to detect
malicious colluding nodes. They assume spatial homogeneity and model sensor mea-
surements as a ground-truth value plus some noise. The ground truth is estimated as
a weighted average of measurements and the difference between the estimated value
and each measurement is assumed to be normally distributed. This assumption is
in keeping with the application of the central limit theorem [Rice 2007] – errors are
assumed to be due to a large number of independent factors and thus to follow a nor-
mal distribution. Compliance with the normal distribution is then assessed with the
Kolmogorov-Smirnov test, which quantifies the distance between an empirical distri-
bution (the errors distribution) and a reference distribution (the normal distribution).

5.1.2. Outlier Detection. Outlier detection methods consider as anomalous data that lies
outside of the space where most data samples lie. This technique can identify malicious
data injections reasonably effectively as long as maliciously injected values are a mi-
nority in the dataset and deviate significantly from the other data.

Historically, outlier detection has been proposed in WSN for different purposes,
sometimes with opposing goals: in some cases the techniques aim to filter out outliers,
in others the outliers represent the main interest. For example, outliers are filtered out
to increase data accuracy [Janakiram et al. 2006] and for energy saving [Rajasegarar
et al. 2007]. Applications where outliers are the main interest include fault detection
[Paradis and Han 2007], event detection [Bahrepour et al. 2009; Zhang et al. 2012]
and detection of malicious data. We describe below different approaches to the out-
lier detection problem independently of the application context, but we focus on those
techniques that can be applied to detecting malicious data injections.

Nearest-Neighbour-Based Outlier Detection. In nearest-neighbour based outlier de-
tection, an outlier is a data sample with a narrow neighbourhood, where a neighbour-
hood comprises the data samples within a certain distance. Most nearest-neighbour
based techniques in WSNs are inspired from the well-known LOCI method [Papadim-
itriou et al. 2003], which calculates for every sample, the number of neighbours in a
data space characterised by the radius αr, where α is a parameter used to reduce com-
putational complexity. The relative difference with the average number of neighbours,
i.e. the samples within a radius r in the data space, constitutes the Multi-Granularity
Deviation Factor (MDEF). The MDEF is compared to a threshold equal to 3 times the
MDEF standard deviation to ensure that less than 1% values are above the threshold
when the distances between data samples follow a Gaussian distribution (the percent-
age increases up to 10% for other distributions). Note that this method is applicable to
malicious data injections by considering the sensors’ measurements as the data sam-
ples. However, the research community seems to have somewhat lost interest in ap-
proaches based on nearest-neighbour since they have large computational overheads
due to the calculation of the neighbours for each new data sample.

Clustering-Based Outlier Detection. Clustering is another technique often used for
outlier detection. Here the outliers are the elements distant from the others, after
organising close elements into clusters. For example, Rajasegarar et al. [2006] identify
a cluster as anomalous if its distance to other clusters is more than one standard
deviation of the distance of the cluster elements from the mean.

PCA-Based Outlier Detection. Principal component analysis (PCA) [Marsland 2009]
is a common data analysis technique, that has also been applied to find outliers
[Chatzigiannakis and Papavassiliou 2007]. PCA is based on a projection of the k-
dimensional data space onto another k-dimensional data space, where the variables
describing the data samples are linearly uncorrelated. This transformation is defined
in such a way that the projected variables are sorted with descending variance. The
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first p out of k variables are defined as the principal components and can be pro-
jected back to the original data space to obtain a prediction vector ynorm [Jackson and
Mudholkar 1979], also referred to as normal data [Chatzigiannakis and Papavassiliou
2007]. The difference between original and normal data constitutes the residual vector
yres. Residual vectors that are large in magnitude (i.e., when the squared prediction
error SPE = ‖yres‖2 of the residual vector is greater than a threshold) are interpreted
as deviations from the predicted (normal) vector and considered as outliers [Chatzi-
giannakis and Papavassiliou 2007]. PCA can be applied to k-dimensional datasets e.g.,
made up of the measurements time series of k sensors [Chatzigiannakis and Papavas-
siliou 2007]. In this case yres reflects changes in spatial correlation but the same idea
can also be applied to the temporal or attribute domains.

Classification-Based Outlier Detection. Traditional classification techniques learn
how to recognise samples from different classes. Anomaly detection considers two
classes: anomalous and normal, however, anomalous data samples are rarely observ-
able compared to the normal ones. Therefore, classification for anomaly detection is
generally reduced to a one-class classification problem, based on the observation of
normal samples only.

Normal and anomalous samples can be viewed as points within two different re-
gions of the data space. Finding the boundary that separates the two regions may be
infeasible, because the regions overlap and, even when a boundary exists, it may have
a complex shape. Support Vector Machine (SVM) are a classification technique that
can overcome this limitation by projecting the data samples into a higher dimensional
space. In the projected data-space, a boundary that separates normal from anomalous
points may exist even if it does not exist in the original space, or may have a simpler
shape. For example, the normal samples could be contained within a sphere in the
projected data space. When the data space contains only positive values, this problem
reduces to a special type of SVM called one-class quarter-sphere SVM [Laskov et al.
2004], which is represented in Fig. 3. With this approach, the classification problem

Fig. 3. One-class quarter-sphere support vector machine, from [Rajasegarar et al. 2007].

reduces to finding the sphere’s radius. Depending on how the WSN dataset is given
in input to quarter-sphere SVM, the classification can be made across its time domain
[Rajasegarar et al. 2007], attribute domain, or both [Shahid et al. 2012] .

Bayesian networks have also been applied in WSNs to detect outliers with a
classification-based approach. A Bayesian network defines the relations of conditional
independence between random variables through a network graph. In WSNs, the ran-
dom variables can be different values in space and time of the physical attributes.
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An example of application of Bayesian networks to WSNs is given by Dereszynski
and Dietterich [2011]. The physical attribute ϕ(si, tk) is modelled as a random variable
which depends on ϕ(si, tk−1) (1st-order Markov relationship) and on values at different
locations ϕ(sj 6=i, tk). The aim is to find the state of a sensor, modelled by a random
variable with two possible values: working and broken. The posterior probability of the
measurements, which depends on both the physical attribute and on the sensor state
variable, is maximised with respect to the state variables to identify faulty nodes.
Dereszynski and Dietterich [2011] evaluated their approach assuming that faulty sen-
sors have an high increase their measurements’ variance (by 105), motivated by the
observation that the measurements of faulty sensors appear more noisy. Though rea-
sonable in the case of faults, this assumption does usually not hold for data injections,
where an attacker can choose the measurements distribution arbitrarily and wishes
in most cases to remain undetected.

Statistical Outlier Detection. Statistical outlier detection identifies outlying data
samples through statistical characterisation of the tail of the samples’ probability dis-
tribution, as shown in Fig. 4.

Fig. 4. Statistical characterisation of the sensed data for outlier detection, from [Bettencourt et al. 2007].

Note that this approach differs from anomaly detection based on statistical tests,
as it does not test the samples’ compliance to their expected distribution, but only
identifies the outliers that lie on the tails of the distribution. For example, outliers can
be defined as samples far from the mean. Ngai et al. [2006] have applied this idea to
measurements from different sensors, thus exploiting spatial correlation. The spatial
sample mean µ̂S of measurements from N different sensors is defined as:

µ̂S =
1

N

N∑
j=1

Sj(t) (6)

Ngai et al. [2006] use it to evaluate the deviation of sensor j from the spatial mean,
compared to the magnitude of the mean itself with the metric: f(j, t) =

√
(Sj(t)−µ̂S)2

µ̂S
.

Similarly Tanachaiwiwat and Helmy [2005], use the metric t∗ = Si(t)−(µTi
±δ)

STi
/
√
W

, where
µTi

and STi
are respectively i’s temporal mean and sample standard deviation in a

window of size W and δ is a priorly known variation between sensor i and j due to
the observed phenomenon’s spatial propagation. Considering the model in Sect. 4.1,
a generic sensor j calculates its temporal sample mean in the W -wide time window
[tK−W+1, tK ] as:

µ̂Tj
=

1

W

W−1∑
n=0

Sj(tK−n) (7)
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The temporal standard deviation is instead calculated as:

ST =

√√√√ 1

W − 1

W−1∑
n=0

(Sj(tK−n)− µ̂Tj
) (8)

The value of t∗ is then compared with a threshold, that is set to 3 since, in normally dis-
tributed data, this accounts for approximately 99.7% of the population (the percentage
decreases to 90% for other distributions).

In some cases the median is preferred to the mean, since the former has the ad-
vantage of being insensitive to outliers. Indeed, a problem in outlier detection is how
to find the general (non-outlying) trend from data affected by outliers. The mean is
sensitive to outliers, since it is proportional to the magnitude of each operand. The
median takes instead one element to represents all the others. Wu et al. [2007] use the
median operator to aggregate sensors measurements in a neighbourhood. We can refer
to it as a spatial median. If we order the N sensors measurement at time t such that
S1(t) ≤ S2(t) ≤ ... ≤ SN (t), the median in the spatial domain is calculated as:

µ̃S =

{
S(N+1)/2(t) if N is odd
SN/2(t) if N is even

(9)

After calculating the difference between the median and each value, there are two
possibilities: comparing each difference to the measurements magnitude, or comparing
it to the general distribution of the differences. Yang et al. [2006; Wu et al. [2007] detect
outliers in the differences, assuming they are normally distributed. Instead of relying
on the assumption of a Gaussian distribution, the probability distribution can also be
estimated from the data [Bettencourt et al. 2007].

When sensing multiple physical attributes, the distribution of the measurements
across all attributes can be considered, rather than a separate distribution for each
one. This approach can potentially detect outliers that a separate approach would fail
to detect. Liu et al. [2007] combine different attributes using the Mahalanobis dis-
tance, which is based on the inter-attribute correlation and defines how the data is
statistically distributed in the attribute space. This scheme is shown in Fig. 5.

Fig. 5. Statistical distribution in the attribute space made up by temperature and humidity. Points with
Mahalanobis distance greater than d are treated as outliers, from [Rajasegarar et al. 2009].
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5.2. Trust-Management Based Techniques
Trust-management considers the trustworthiness between two classes of entities: a
trustor and a trustee. The trustor assigns each trustee a trustworthiness value, based
on how much the trustee’s behaviour matches an expectation. Trustworthiness values
are usually in the range [0, 1], decreasing when the trustee exhibits deviations from
the expected behaviour and increasing when the trustee’s behaviour matches the ex-
pectation.

Trust-management can be usefully applied in WSNs to reduce the influence of the
compromised sensor nodes that inject malicious data. Indeed, if the expected behaviour
accurately characterises genuine nodes, compromised nodes would be assigned a low
trustworthiness when deviating from it. Since trust values are a continuous metric
defined inside an interval, there is no direct classification of compromised and genuine
nodes. Instead, the trust values are used to apply a penalisation proportional to the
confidence that the sensor is compromised. Note that the influence of the compromised
nodes become negligible only when the confidence is sufficiently high. Filtering all the
sensors with a trustworthiness under a given threshold [Sun et al. 2012], could help
mitigate this drawback, but requires a method to set the appropriate threshold.

5.2.1. Event-based techniques. Trust-management for sensed data was originally intro-
duced as a complement to network-level trust, i.e. how much nodes can be trusted to
perform correctly network-level tasks [Ganeriwal et al. 2003; Raya et al. 2008; Momani
et al. 2008] such as communicating routes, participating to the route discovery process,
routing incoming packets etc. The behaviour with respect to each of these tasks can be
of two kinds: cooperative and uncooperative.

The first examples of trust management for sensed data use a similar binary evalu-
ation to build the trustworthiness, defined with respect to an event detection process.
Initially, a decision logic establishes the presence of the event by combining the sensed
data and the trust values). Then, the sensed data is compared to the final decision
to measure the sensor’s cooperativeness and update the trust values. This criterion is
based on the assumption that nearby sensors are expected to agree about the event
presence, which is a form of spatial correlation (see Sect. 4.4).

One of the first techniques to adopt this approach is described in [Atakli et al. 2008].
As shown in Fig. 6, the reading of a generic sensor i, Si(t), which can take the values
0 and 1 (absence/presence of an event), are relayed to a forwarding node. This node
computes

∑N
n=1WnSn(t), where Wn :n∈1...N denote the trust weights.

Fig. 6. Trust-weighted aggregation for event detection. FN is a forwarding node, which collects reports from
the sensor nodes SN, from [Atakli et al. 2008].

The result is used to decide about the ground truth E. Afterwards, weights are up-
dated with the following rule:

Wn =

{
Wn − θrn, if Sn(t) 6= E

Wn, otherwise
(10)
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where rn is the ratio of sensors giving different output over the total number of
sensors and θ is a penalty weight that determines a trade-off between the detection
time and accuracy. In summary, the trustworthiness values, which coincide with the
weights, are calculated based on the measurements consistency with the aggregated
value. The latter is considered more reliable than the single readings, since sensors
which exhibited inconsistent (e.g. malicious) readings in the past contribute less to the
aggregation process. Finally, malicious nodes are detected by comparing the weights
to a threshold, which the authors heuristically set to 0.4. Note that the algorithm is
vulnerable to the on-off attack: a node that performs well for a time period, acquires
high trustworthiness, then suddenly starts malfunctioning [Sun et al. 2006].

To counteract the on-off attack Oh et al. [2012] and Lim and Choi [2013] propose to
penalise Sn(t) 6= E by a quantity α and reward Sn(t) = E by a quantity β with β < α.
As α

β grows bigger, faulty and malicious nodes are filtered out faster. However, sensors
with transient faults are also filtered out, even though they may report correct mea-
surements later on. To avoid this, the ratio α

β needs to also consider the probability of
transient faults and their duration distribution. Therefore, this operation just reduces
the frequency with which an attacker can switch between “good” and “bad” behaviour
in an on-off attack.

When the sum of all trust weights is equal to 1, the weighted sum of sensors reading
corresponds to a weighted mean. As described in the previous section, the mean has
the drawback of being directly proportional to extreme readings. So in trust-based
aggregation as well, the median could be used as a more robust aggregation operator. A
trust weighted median has been applied by Wang et al. [2010] in the context of acoustic
target localisation, where the median allows to filter out faulty measurements. The
advantages of using the weighted median increase when an element with high weight
has an extreme value. Indeed, while the weighted mean would be biased towards that
value, the weighted median would still filter it out, if the other values are not extreme
and the sum of their weights is bigger than the weight of the extreme value. This
property reduces the efficacy of an on-off attack.

Another aspect to take into account is the uncertainty in the event’s presence. Raya
et al. [2008] deal with this aspect by using a decision logic based on Dempster-Shafer
Theory (DST), which expresses the belief about the event presence as a combination
of individual beliefs from sensor nodes. DST combines the sensors information sup-
porting the event with the information non-refuting the event (the uncertainty margin
which may comply with the event presence).

5.2.2. Anomaly-based techniques. Rather than analysing the compliance with the out-
put of on an event decision logic, other trust-management techniques look for anoma-
lous behaviours with techniques similar to anomaly detection ones.

In fact, the output of anomaly detection itself can be used to define a coopera-
tive/uncooperative behaviour [Ganeriwal et al. 2003], but a more flexible approach,
that does not restrict the observations to a binary value, is to update trust values
based on an anomaly score. An example is given by Bankovic et al. [2010], using self-
organizing maps (SOM). SOM are a clustering and data representation technique, that
maps the data space to a discrete 2D neuron lattice. Bankovic et al. [2010] build two
SOM lattices: one in the temporal domain and another in the spatial domain. The trust
values are assigned based on two anomaly scores: the distance between the measure-
ment and the SOM neuron and the distance between the neuron to which the mea-
surement has been assigned and other SOM neurons. The main disadvantage of this
algorithm is its computational time. For better accuracy, SOM require many neurons,
but the computational time increases noticeably [McHugh 2000].
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Another example is given by Zhang et al. [2006], who use a statistical-test approach
(see Sect. 5.1.1) to assign reputation values to the sensors. The measurements gath-
ered in time are assumed to approximately follow a normal distribution. The normal
and actual measurements distribution are compared with the Kullback-Leibler diver-
gence Dn, which evaluates the information lost when a probability distribution is used
in lieu of another. The divergence is then used to update the trust values, with the
following expression:

Wn =
1

1 +
√
Dn

(11)

5.2.3. Using Second Hand Information. In the trust-management schemes previously
analysed, each sensor’s trust values are computed and updated by the device with
the trustor role, typically a forwarding node. However, when the trustor is not in the
transmission range of its trustee i, it may rely on information from its neighbours Ni
to calculate its trustworthiness. Bao et al. [2012] deal with this problem by introducing
two different trust update criteria:

Tij(t) =

{
(1− α)Tij(t− δt) + αTij(t) if j ∈ Ni
avgk∈Ni{(1− γ)Tkj(t− δt) + γTkj(t)} otherwise

(12)

The calculations of the second case represent node j’s recommendation, i.e. the trust-
worthiness extracted from relayed information. Eventually, recommendations depend
on trustworthiness from the viewpoint of direct neighbours. However, such trustwor-
thiness can be manipulated by malicious nodes to bad-mouth or good-mouth other
nodes. Bao et al. [2012] mitigate this problem by controlling the impact of recommen-
dations through parameter γ, set to βTik(t)

1+βTik(t)
. Thus, if a sensor has little trust compared

to the parameter β, the contribution of its recommendation will be small. However,
sensors conducting an on-off attack can give false recommendations for a short while
and then behave correctly again without being detected.

Even when direct information is available, recommendations can be used as second
hand information and combined with direct information to obtain a reputation. Second
hand information speeds up the convergence of trust values but adds network traffic
overhead and introduces new problems, such as the weighting criterion for recommen-
dations and the recommendation exchange frequency [Huang et al. 2006]. Ganeriwal
et al. [2003] follow this approach and treat reputation as a probability distribution, up-
dated as a combination of direct and indirect reputation. Direct reputation is updated
based on a watchdog module, while indirect reputation is updated with recommen-
dations, i.e. reputation from other nodes. The framework’s scheme is shown in Fig.7.
Note that such definition of reputation introduces a loop: indirect reputations come
from reputations given by other sensors, which in turn depend on indirect reputations.
To avoid the information loop, the recommendations need to be taken only from direct
observers.

Modelling the reputation as a single value does not consider the uncertainty that a
sensor has in trusting another sensor. This information is particularly useful with rec-
ommendations, as recommendations from sensors with high uncertainty should con-
tribute less. To consider uncertainty, the reputation can be modelled with a probability
distribution, whose choice is dictated mainly from the trust evaluation and update
criteria. For example, Ganeriwal et al. [2003] use the beta distribution since it is the
posterior distribution when the binary interactions between nodes are modelled with
a binomial distribution. Momani et al. [2008] apply a normal distribution to model
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Fig. 7. Combination of direct information and recommendations, from [Ganeriwal et al. 2003].

the differences between the measurements of two sensors (spatial homogeneity is as-
sumed, see Sect. 4.4).

6. DIAGNOSIS AND CHARACTERISATION OF MALICIOUS DATA INJECTIONS
Detecting the deviation of the measurements from the expected behaviour is usually
not sufficient to infer the presence of a data injection attack. In the case of outlier
detection, for example, we have seen that measurements are only classified as outly-
ing or non-outlying, but malicious data injection is only one of the possible causes for
outlying data. In general, regardless of the technique that detects the deviation from
an expected behaviour, the cause for that deviation needs to be found. We refer to this
task as diagnosis. Generally, it is not a trivial task, because different causes such as
faults or genuine events may have similar effects.

Additionally, even when the presence of an attack can be ascertained with confi-
dence, further information is needed to determine the course of action to be taken. For
example, there is the need to know the attack’s effects and the system area (nodes)
affected by the attack. We refer to this other task as the characterisation of the attack.

In the following we analyse the state-of-the-art for diagnosis and characterisation of
malicious data injections in WSNs.

6.1. Diagnosis
Diagnosis of malicious data injections in WSNs consists of distinguishing them from
two main phenomena that can produce similar deviations from expected behaviour:
faults and events of interest. Faults represent generic unintentional errors introduced
e.g., by obstacles in the environment, sensors’ battery depletion, pollution, fouling etc.
Events of interests represent environmental conditions that seldom manifest, but are
interesting as they can reveal an alarm scenario e.g., heart attacks, fires, volcanic
eruptions etc.

Information about the cause of an anomaly or of an untrustworthy sensor can be
precious. With fine-grained knowledge about the nature of the problem, an appropri-
ate response can be initiated to address it. Unfortunately, in the papers analysed so
far, an exhaustive diagnosis phase is still lacking. Most of the attention has focussed
on diagnosing events as opposed to faults. The general assumption used to distinguish
between them is that faults are likely to be stochastically unrelated, while event mea-
surements are likely to be spatially correlated [Luo et al. 2006; Shahid et al. 2012].
Note that this assumption excludes common-mode failures from the analyses. Based
on this assumption, after detecting deviations from expected data with temporal [Bet-
tencourt et al. 2007; Shahid et al. 2012] or attribute [Shahid et al. 2012] correlations, it
is possible to diagnose whether the deviation was caused by a fault or an event, by ex-
ploiting spatial correlation. When there is a consensus among a set of sensors about the
presence of an event, discording sensors are considered faulty [Luo et al. 2006; Shahid
et al. 2012; Bettencourt et al. 2007]. Similarly, some sensed attributes (e.g. human vi-
tal signs, such as glucose level, blood pressure, etc.) can be assumed heavily correlated
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in the absence of faults, which instead disrupt attribute correlations. Then, if we fur-
ther assume that events would cause a minimum number of outlying attributes, faults
can be identified when the minimum is not reached [Salem et al. 2013].

Fewer advances have been made towards diagnosing malicious interference as op-
posed to faults and events – we summarise them in the following sections.

6.1.1. Distinguishing Malicious Interference from Events. In the literature, malicious inter-
ference is distinguished from events through an agreement-based strategy [Liu et al.
2007; Atakli et al. 2008; Wang et al. 2010; Oh et al. 2012; Lim and Choi 2013; Sun
et al. 2013], i.e. the sensor’s information is first used to decide about the presence of
an event and then sensors which did not support the final decision are identified as
malicious. This approach is based on the assumption that sensors are sufficiently spa-
tially correlated to correctly detect events. However, multiple compromised nodes can
also collude in the attack to keep the spatial correlations consistent between them-
selves. This complicates discriminating between genuine events and malicious data
injections, and allows an attacker to fabricate false events or to mask genuine ones.
This aspect is discussed in more detail in Sect 6.2.

6.1.2. Distinguishing Malicious Interference from Faults. Criteria to distinguish malicious
data injections from faults are less remarked. Two main approaches can be identified:
delegating the diagnosis to intrusion-detection techniques and leveraging fault statis-
tics.

Intrusion Detection. One of the main challenges in detecting attacks with anomaly-
based techniques, is that such techniques abstract the means through which an at-
tack is conducted. This choice comes from their objective to detect new attacks with
unknown patterns, as opposed to intrusion detection techniques which are based on
recognising known attack signatures. The framework proposed by Ngai et al. [2006]
is a trade-off between an anomaly-detection technique and an intrusion detection sys-
tem, since the detection is carried out through anomaly detection achieving high de-
tection rate, while the diagnosis is carried out with intrusion detection. Clearly this
approach provides diagnosis only for known attacks and cannot distinguish between
an unknown attack and a fault.

Fault Statistics. The statistical characterisation of faults can also be used to dis-
tinguish them from malicious interference. Oh et al. [2012] and Lim and Choi [2013]
use the expected frequency of transient faults to avoid excluding from the system sen-
sors subject to transient faults. Indeed, their trust management algorithm allows such
sensors to recover trustworthiness, by allowing temporary misbehaviour. Only sensors
misbehaving with higher frequency, including malicious sensors and sensors with per-
manent faults will then be excluded.

6.2. Characterisation
If detection and diagnosis of malicious data injections answers the question “Is there
an attack?”, characterisation answers questions such as “Which are the compromised
sensors?” and “How is the attack performed?” The difference is perhaps more evident in
event-detection tasks. For example, after detecting the presence of an event, the event’s
spatial boundary can be characterised using the methodology proposed in [Wu et al.
2007], which finds the areas where the difference between the measurements from
different sensors is high, indicating a discontinuity introduced by the event boundary.
In this case, characterisation is triggered by detection, but is a separate task.

6.2.1. Collusion and its effects. In malicious data injections, detection, diagnosis and
characterisation are often addressed simultaneously, since the information character-
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ising the attack can be precious to improve the detection. In particular, when multiple
sensors have been compromised and collude in the attack, they act in concert to change
the measurements whilst evading, if possible, any anomaly detection applied. There-
fore, identifying which sensors are more likely genuine and which sensors are more
likely compromised becomes an integral part of detecting the attack itself.

In collusion attacks compromised sensors follow a joint strategy that reduces the
advantages of spatial correlation, since the compromised nodes co-operate to form
credible spatially correlated data [Tanachaiwiwat and Helmy 2005]. In the presence
of collusion, diagnosis is also significantly more complex. Tanachaiwiwat and Helmy
[2005] point out that when a genuine outlier (for example related to an event) occurs,
extreme readings from the colluding nodes could be hidden. The problem becomes in-
creasingly difficult as the percentage of (colluding) compromised sensors increases.
Ultimately, when the number of colluding sensors increases to the point of exceeding
genuine sensors, the attack may still be detectable, but it may be impossible to distin-
guish which nodes are genuine and which nodes are compromised. Tanachaiwiwat and
Helmy [2005] evaluate their anomaly detection algorithm against colluding nodes and
find that performance noticeably decreases when more than 30% nodes are colluding.
A similar result is reported by Chatzigiannakis and Papavassiliou [2007].

Bertino et al. [2014] describe a new attack scenario applicable when the trustwor-
thiness is calculated through an iterative filtering algorithm. While in generic (non-
iterative) trust-evaluation techniques, trust weights are updated based on data from
the current time instant and the weights calculated at the previous time instant, in it-
erative filtering the weights are iteratively updated with data of the same time instant
until a convergence criterion is satisfied. In this context the authors introduce a new
attack scenario where all colluding nodes but one, produce noticeable deviations in
their readings. The remainder compromised node reports, instead, values close to the
aggregated value of all the readings (including malicious ones). Eventually, this node
acquires a high trust value, while all the others acquire low trust values. The aggre-
gated value, in turn, quickly converges to a value far from that of the genuine nodes.
The authors show that this attack is successful when the sensors are assigned equal
initial trustworthiness. They therefore propose to calculate the initial trustworthiness
as a function that decreases as the error variance increases. The error is defined as the
distance from an estimated physical attribute value ϕ(t), and is the same for all the
sensors.

In [Rezvani et al. 2013] the same authors proposed another technique that detects
collusion rather than counteracting it. This technique is based on the assumption that
deviations from the aggregated values are normally distributed for genuine nodes.
This assumption comes from the observation that the deviations of non-compromised
nodes, even if large, come from a large number of independent factors, and thus must
roughly have a Gaussian distribution. For colluding nodes instead, they assume that
this condition does not hold. Then, by running the Kolmogorov-Smirnov test to check
compliance to the normal distribution, they discriminate colluding nodes from genuine
nodes.

In summary, while many studies propose propose new anomaly detection algorithms
to cater for a broad range of scenarios, comparatively fewer address specifically mali-
cious data injections in a way that can cater for more sophisticated attacks involving
collusion between sensors. Such scenarios will need to be explored further in the fu-
ture.

6.2.2. Characterisation Architectures: Centralised vs. Distributed. To detect, diagnose and
characterise the nodes injecting malicious measurements, different architectures can
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be employed with different degrees of distribution. We discuss the properties of differ-
ent solutions below.

In WSNs there is always at least one entity which eventually collects the measure-
ments for the analyses, decisions and actions that the system needs to carry out: the
base station. The base station is usually assumed free of compromise and therefore
can be used to characterise the compromised nodes. In this case we have a centralised
architecture such as in [Chatzigiannakis and Papavassiliou 2007; Atakli et al. 2008;
Oh et al. 2012; Lim and Choi 2013; Rezvani et al. 2013].

Even when the base station is the only trusted entity in the network, distributed
characterisation is possible. Indeed, as proposed in [Bao et al. 2012], the sensor nodes
can be assessed in a hierarchical structure where each node assesses the trustwor-
thiness of nodes below it in the hierarchy. The base station thus trusts nodes when a
chain of trust can be established from that node to the base station.

When the distribution principle is taken to the extreme, each node acts as a watch-
dog for all its neighbours and reports alerts to the base station (or the next node in the
hierarchy) [Ganeriwal et al. 2003; Tanachaiwiwat and Helmy 2005; Liu et al. 2007].
After all the reports are collected, a decision is taken based on algorithms such as ma-
jority voting [Hinds 2009]. The drawbacks of this approach are: that it lacks global
knowledge and for this reason it is less robust to collusion attacks and that it in-
troduces significant network overhead given by the watchdog reports. Tanachaiwiwat
and Helmy [2005] propose to overcome these problems by deploying multiple reliable
tamper-resistant sensor nodes that probe suspicious nodes. This solution, however,
requires additional expensive hardware, which undermines the cost advantages of
WSNs.

7. DISCUSSION
In the previous sections we have seen how different techniques can be applied to de-
tect malicious data injections, how they leverage measurements’ correlations and the
assumptions on which such correlations are based. We have examined the different de-
tection techniques and how they find deviations from the expected behaviour. We have
highlighted the importance of distinguishing between different sources of deviations
and presented the main directions of work towards this objective so far.

We now combine these analyses by building direct comparison tables, which sum-
marise their main characteristics. A summary of the results reported by each of the
techniques mentioned is provided in the following section.

7.1. Comparison of Approaches
We divide our comparison of the approaches analysed so far into Tables II and III,
containing the anomaly detection and trust management techniques respectively. The
content of the columns from left to right is: technique name and reference; correlation
used to define expected data; assumptions about the spatial model if any; detection
criterion used; possible sources of anomalies (as mentioned in their paper) and for
which of them diagnosis criteria are given, e.g. {Event},{Malicious or Faulty} means
that the authors give a criterion to discern between anomalies arising from events and
from malicious or faulty sensors.

We observe that spatial correlation is most often exploited, and this under the fre-
quent assumption of a homogeneous space. The situation is particularly evident for pa-
pers considering the presence of malicious data injections and probably a consequence
of the fact that, generally, only a minor subset of sensors is assumed to be compro-
mised. Therefore, in the spatial domain there is always a significant set of genuine
measurements that can be exploited to detect the malicious ones.
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Assuming spatial homogeneity makes the calculations significantly simpler, since
the sensors are considered to measure the same value. However, it also significantly re-
stricts the applicability of the techniques in real cases. When the physical phenomenon
is observed with low precision, e.g. overall temperature across a large open space area,
this assumption is still valid if the spatial variations are absorbed by the error term in
Eq. 2. However, this allows an attacker to introduce malicious data that are within the
error bounds yet still deviate significantly from the real values. While this assump-
tion is generally appropriate in small areas, small areas also typically include fewer
sensors which have higher risk of an attacker compromising them all.

When multiple types of correlation are considered, temporal correlations are gener-
ally exploited along spatial ones. Use of attribute correlations is rather infrequent,
probably due to the fact that understanding them requires knowledge about their
physical significance and this is application specific. The tables highlight even more
the lack of diagnosis and characterisation (see Sect. 6.1). Few papers consider specifi-
cally malicious injections with collusion and even fewer papers deal with the problem
of distinguishing them from other causes of deviations. While distinguishing events
from faults is the diagnosis more frequently considered, distinguishing attacks from
faults is undoubtedly more challenging and still rather rare.

7.2. Comparing Reported Evaluation Results
In the previous sections, we have considered techniques that could be applied to the
problem of detecting, diagnosing and characterising malicious data injections. For
those techniques that focus specifically on malicious data injections we now present
the experimental evaluation set-up used by the authors and compare the reported re-
sults. None of these techniques has been tested on real attacks scenarios. This is not
surprising as finding real attack data in existing WSN deployments is difficult. In fact,
two approaches have been broadly adopted to evaluate the algorithms for detection of
malicious data injections: simulation [Sun et al. 2013; Liu et al. 2007; Rezvani et al.
2013; Atakli et al. 2008; Bankovic et al. 2010; Oh et al. 2012; Bao et al. 2012; Lim and
Choi 2013] and injection of attacks in real datasets [Tanachaiwiwat and Helmy 2005;
Chatzigiannakis and Papavassiliou 2007].

Table IV summarises all the results achieved, together with all the relevant simu-
lation parameters. The last three columns express the false positive rate (FPR) when
the detection rate (DR) is respectively 0.90, 0.95 and 0.99. DR is, by definition, the
number of attack instances that are correctly detected, divided by the total number
of attack instances. FPR is, by definition, the number of times normal data instances
are misclassified as attacks, divided by the total number of normal data instances.
The relationship between DR and FPR is known as the Receiver Operating Charac-
teristic (ROC). Column 2 reports information about the size of the dataset used in the
experiments. Column 3 reports the percentage of either malicious nodes or malicious
measurements. Column 4 reports the input size for the algorithm; for example in an
experiment with 100 nodes, where the nodes are clustered in groups of 10 and the
algorithm is run on clusters, the algorithm input size is 10.

Generally, in each paper, the tests are conducted in scenarios with different assump-
tions. For instance, Liu et al. [2007] generate data with a normal distribution for nor-
mal sensors and another normal distribution for malicious sensors. The results are
excellent, but depend a lot on the difference between the two distributions. Another im-
portant assumption, which has noticeable impact on the results, is the spatial model.
As pointed out in Sect. 4.4, most papers assume that the sensors’ readings are ho-
mogeneous in the space; in other words the measurements are expected to be equal to
each other, apart from noise and errors. The consequence of this assumption is that, by
increasing the number of sensors, the information redundancy also increases and the
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Table II. Anomaly detection techniques

Work Correlation ex-
ploited

Spatial model Detection method Classes considered Inter-class discrimina-
tion

EKF, CUSUM GLR
[Sun et al. 2013]

Temporal None Change in the distribution
of error from estimate

Event, Malicious,
Faulty

{Event}, {Malicious or
faulty}

MGDD [Subramaniam
et al. 2006]

Temporal None Measurement probability Event, Fault None

[Ngai et al. 2006] Spatial Homogeneous Difference with neighbours Suspicious of Sink-
hole attack

None

[Wu et al. 2007] Spatial Homogeneous Difference with neighbours Event None
FIND [Guo et al. 2009] Spatial Monotonic

WRT event
source

Spatial monotonicity dis-
ruptions

Fault None

[Salem et al. 2013] Attribute-
temporal

None Energy of fluctuations Event, Fault {Event} {Faulty}

STIOD [Zhang et al.
2012]

Spatio-
temporal

Variogram Difference with estimate Event, Error {Event} {Error}

MAP+HBST [Ni and
Pottie 2012]

Spatio-
temporal

Linear spatial
trend

Difference with estimate Fault None

[Liu et al. 2007] Spatial Homogeneous Difference with neighbours Malicious, Event {Malicious}, {Event}
ART [Tanachaiwiwat
and Helmy 2005]

Spatial Homogeneous Difference with neighbours Compromised, Un-
calibrated Sybil

{Compromised
or Faulty},
{Uncalibrated},
{Sybil}

[Rajasegarar et al.
2007]

Spatio-
temporal

Homogeneous Values outside a quarter-
sphere

None None

STA-QS-SVM [Shahid
et al. 2012]

Spatio-
temporal
and Spatio-
attribute

Homogeneous Values outside a quarter-
sphere

None None

[Chatzigiannakis and
Papavassiliou 2007]

Spatial High Pearson
correlation

Changes in correlation Fault, Malicious {Point failure or ma-
licious node}, {Group
failure or Collusion}

[Bettencourt et al.
2007]

Spatio-
temporal

Homogeneous Distribution of temporal
and spatial differences

Event, Fault {Event}, {Point fail-
ure}

[Handschin et al. 1975] Spatial Linear combi-
nation of state
variables

Difference with estimate Fault None

Robust IF [Rezvani
et al. 2013]

Spatial Homogeneous Distribution of distance
from estimation

Fault, Malicious None

number of sensors taken into account is decisive. Recall from Sect. 4.4 that the sensing
space can be approximately homogeneous only if we consider a small portion of space
where there are no obstacles. In works like [Chatzigiannakis and Papavassiliou 2007]
and [Bankovic et al. 2010], where this assumption is not present, the FPR is higher,
but the algorithm has wider applicability. Tanachaiwiwat and Helmy [2005] rely on the
spatial homogeneity assumption, and apply their technique to a large neighbourhood
(100 nodes). The FPR is better but still not negligible (more than 20%). Atakli et al.
[2008] also rely on this assumption and apply their algorithm on very large neigh-
bourhoods. With 100 nodes the FPR for DR=0.90 is 3%, but for DR=95 and DR=99
the FPR increases by an order of magnitude. In contrast, [Oh et al. 2012; Bao et al.
2012; Lim and Choi 2013], are successful in keeping the FPR low even for high DR.
Note that with a larger number of nodes the FPR of the technique described in [Atakli
et al. 2008] increases. This result contrasts with the consideration that we made about
the the spatial homogeneity assumption. The reason behind that, lies probably in the
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Table III. Trust based detection techniques

Work Correlation ex-
ploited

Spatial model Detection method Classes considered Inter-class discrimina-
tion

[Zhang et al. 2006] Spatio-
temporal

Homogeneous Distance from mean of top-
trust sensors

Malicious None

WTE [Atakli et al.
2008]

Spatial Homogeneous Trust under a threshold Malicious None

[Momani et al. 2008] Spatial Homogeneous Trust under a threshold Faulty, Malicious None
[Wang et al. 2010] Spatial Homogeneous Difference with aggregated

value
Faulty, Event {Faulty}, {Event}

[Bankovic et al. 2010] Spatio-
Temporal

Heterogeneous Difference with learnt pat-
tern

Malicious None

Trust-based IDS [Bao
et al. 2012]

Spatial Homogeneous Trust under a threshold Malicious, Event {Malicious}, {Event}

DWE [Oh et al. 2012] Spatial Homogeneous Trust under a threshold Malicious, Perma-
nent Fault, Tran-
sient Fault, Event

{Malicious or Perma-
nent Fault}, {Event}

Dual threshold [Lim
and Choi 2013]

Spatial Homogeneous Trust under a threshold Malicious, Perma-
nent Fault, Tran-
sient Fault, Event

{Malicious or Perma-
nent Fault}, {Event}

Table IV. Detection performances, independent attacks

Work Dataset size Dataset malicious
percentage

Input size for each
algorithm
execution

FPR for
DR=0.90

FPR for
DR=0.95

FPR for
DR=0.99

EKF [Sun et al. 2013] 10000 samples 50% samples, same
node 6 0.22 0.42 0.7

[Liu et al. 2007] 4096 nodes 10-25% nodes 10 0.01 0.01 0.07

ART [Tanachaiwiwat and Helmy
2005] 100 nodes

30-50% samples,
random selection of

malicious nodes
100 0.25 0.22 0.21

[Chatzigiannakis and
Papavassiliou 2007] 40 nodes 10% nodes 40 0.67 0.69 0.7

[Chatzigiannakis and
Papavassiliou 2007] 40 nodes 40% nodes 40 0.48 0.5 0.6

WTE [Atakli et al. 2008] 100 nodes * 200
samples 0-25% nodes 100 0.03 0.41 0.78

WTE [Atakli et al. 2008] 400 nodes * 200
samples 0-25% nodes 400 0.10 0.44 0.78

[Bankovic et al. 2010]
2000 nodes * 2500
samples (1000 are
used for training)

5% nodes 2000 0.5 0.5 0.5

Trust-based IDS [Bao et al. 2012] 900 nodes N/A N/A 0.001 0.05 N/A
DWE [Oh et al. 2012] 200 samples 20% nodes 20 0.01 0.01 0.02

Dual threshold [Lim and Choi
2013] 100 samples 10% nodes 12 N/A N/A 0.001

Dual threshold [Lim and Choi
2013] 100 samples 20% nodes 12 0.18 0.14 0.10
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Table V. Detection performances, colluding attacks

Work Dataset size Colluding percentage
Input size for each

algorithm
execution

FPR for
DR=0.90

FPR for
DR=0.95

FPR for
DR=0.99

ART [Tanachaiwiwat and Helmy
2005] 100 nodes 30-50% samples 100 0.25 0.22 0.21

[Chatzigiannakis and
Papavassiliou 2007] 40 nodes 10% nodes 40 0.67 0.69 0.7

[Chatzigiannakis and
Papavassiliou 2007] 40 nodes 40% nodes 40 0.76 0.78 0.8

Robust IF [Rezvani et al. 2013] 20 nodes per 400
samples 40% nodes 20 N/A 0.021 0.021

inaccuracy of the empirical ROC curve calculation. Another possible cause is that the
algorithm is sensitive to the absolute number of compromised nodes rather than to
its ratio to total nodes. For example 80 out 400 compromised nodes may be harder to
detect than 20 out of 100, event though the percentage of malicious nodes is 20% in
both cases.

In Table V, we report the results for the cases considering collusion. The results re-
ported in [Chatzigiannakis and Papavassiliou 2007] show non negligible FPR values
(above 60%). The results reported in [Tanachaiwiwat and Helmy 2005] have a better
FPR (around 20%). Rezvani et al. [2013] instead, achieve very good results (FPR less
than 5%). Nevertheless, recall that this technique is applicable only when the the spa-
tial homogeneity assumption among the 20 sensors is reasonable. In scenarios where
the sensors readings cannot be assumed to share the same physical attribute function,
the results may degrade substantially. This is the case for physical attributes like vi-
bration, light, wind etc., where the correlation of the attribute measured at different
locations rapidly decreases with the event propagation.

7.3. Comparing Techniques Overhead
The applicability of a technique to a real WSN does not only depend on the relation-
ship between the detection rate and the false positive rate, but also on the overhead
introduced. We analyse computational and communication overhead for the techniques
discussed in the previous section, and summarise their asymptotic complexity in table
VI. As usual,N is the number of sensors, whileNn is the average number of neighbours
and W is the temporal memory, i.e. the number of past samples used.

From table VI, we note that anomaly detection techniques generally introduce more
computational overhead than trust management techniques. The reason behind this
result is that trust management iteratively refines its confidence about a sensor’s
trustworthiness, whereas anomaly detection builds such confidence from scratch at
each iteration. On the other hand, this is also the main reason why trust-management
algorithms are vulnerable to on-off attacks (see Sect. 5.2).

Another noticeable result is that communication overhead is always kept lower than
computational overhead – this result is to be expected since network communica-
tion is more expensive in terms of energy and leads to faster battery depletion. In
anomaly detection techniques the communication overhead comes from the execution
of consensus-like protocols which decide about the maliciousness of nodes after anoma-
lies are detected. Trust management techniques instead, delegate such decisions to the
nodes that are higher in a WSN hierarchy (e.g. the forwarding nodes, cluster heads,
base station). Thus communication overhead is introduced in trust management tech-
niques only when recommendations are enabled (such as in [Bao et al. 2012]).
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Table VI. Techniques overhead

Class Work Computational Overhead Communication Overhead

Anomaly Detection

ART [Tanachaiwiwat and Helmy
2005] O(W ∗Nn) O(1)

[Liu et al. 2007] O(N2
n) O(Nn)

[Chatzigiannakis and
Papavassiliou 2007] O(WN2

n + N3
n) 0

EKF [Sun et al. 2013] O(1) O(Nn)

Robust IF [Rezvani et al. 2013] O(WN2) 0

Trust management

WTE [Atakli et al. 2008] O(Nn) 0

[Bankovic et al. 2010] O(N2
n) + O(W 2) 0

Trust-based IDS [Bao et al. 2012] O(Nn) O(Nn)

DWE [Oh et al. 2012] O(Nn) 0

Dual threshold [Lim and Choi
2013] O(Nn) 0

8. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS
Malicious data injections are a considerable threat for WSNs. We reviewed state-of-
the-art techniques that can detect malicious data injections by defining an expected
behaviour and then detecting deviations from it. We classified these approaches into
two main families: anomaly detection and trust management. They differ in the as-
sessment of an anomalous condition, but both rely on the definition of an expected
behaviour. We analysed and compared the techniques by their definition of expected
behaviour and noted that expectations can come from correlations: a) in time: differ-
ent time, same sensor, same attribute; b) in space: same time, different sensors, same
attribute; c) across different physical attributes: same time, same sensor, different at-
tributes; or d) their combination.

While many techniques can be applied, comparatively few target explicitly malicious
data injections, especially when collusion between compromised sensors is considered.
Most techniques aim to detect erroneous measurements, either to improve the quality
of the measuring process (e.g. [Subramaniam et al. 2006; Bettencourt et al. 2007]), or
to reduce the power associated with the transmission of the measurements (e.g. [Wang
et al. 2010; Salem et al. 2013].

Work aimed detecting malicious data injections, generally uses spatial correlation in
constructing the expectations (e.g. [Zhang et al. 2006; Liu et al. 2007; Chatzigiannakis
and Papavassiliou 2007]) in keeping with a general assumption that only a subset of
sensors has been compromised. In this case, a non-void set of genuine measurements
is always present in the spatial domain.

We discussed the different assumptions that characterise the spatial domain, and
analysed how they impact the performance of the detection algorithms. More precisely,
we observed a substantial decrease in performance when moving away from a homo-
geneous space model, where all sensors perceive similar measurements, to heteroge-
neous space models, where different measurements are expected at different locations.
This result is visible, for example, in the difference between the results achieved in
[Tanachaiwiwat and Helmy 2005] and [Rezvani et al. 2013], who assume a homoge-
neous space, and those achieved by [Chatzigiannakis and Papavassiliou 2007], who
only assume some degree of correlation between the sensors. The results, in the latter
case, show noticeable higher false positive rates. We conclude that more research is
needed to achieve better results when the spatial domain is heterogeneous. This will
also improve the general applicability of the algorithms in real life deployments.
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We explored different approaches to the detection phase, where the deviation from
the expected behaviour is assessed, and noted a clear preference in the literature for
outlier-detection techniques (e.g. [Ngai et al. 2006; Liu et al. 2007; Sun et al. 2013]).
In this case, the expectation of a measurement is compliant with a generalisation of
the measurements behaviour. This approach is independent from the context and is
preferred to more context-specific techniques based on model checking (e.g. [Handschin
et al. 1975]).

Finally, to complete the detection of malicious data injections, we identified two main
aspects that need to be addressed: diagnosis and characterisation. These are, by and
large, insufficiently studied in the literature.

Diagnosis consists of identifying the cause of the detected anomaly which, besides
malicious data injections, may lie in faults or events of interest. Both these phenomena
can produce deviations from expected behaviour similar to malicious injections. Whilst
partial diagnosis is investigated in, e.g., [Tanachaiwiwat and Helmy 2005; Bettencourt
et al. 2007; Chatzigiannakis and Papavassiliou 2007; Oh et al. 2012], an exhaustive di-
agnosis phase is still lacking. Fault-related anomalies may be handled separately from
malicious data injections, as fault models are relatively well categorised and under-
stood. However, event-related anomalies cannot be considered separately (like in [Liu
et al. 2007]), since an attacker may inject malicious measurements that depict a fab-
ricated event or conceal a real event. Therefore, in WSNs that monitor the occurrence
of events, malicious injections and events should be addressed together, to produce a
compromise-resistant detection and characterisation of events.

Similarly, further investigation of the attack characterisation, is needed, in particu-
lar to identify the compromised sensors in the presence of collusion. This aspect adds
more complexity to the problem since colluding sensors can reduce data inconsistencies
introduced in the attack, especially in the spatial domain.

Across all of the above, a good model of expected system behaviour plays a central
role and determines both the applicability of the algorithms for detecting malicious
data injections as well as their performance.
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