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Abstract. We propose a framework, called FATHoM (FormAlizing TH-
reat Models), to define threat models for virtualized systems. For each
component of a virtualized system, we specify a set of security proper-
ties that defines its control responsibility, its vulnerability and protection
states. Relations are used to represent how assumptions made about a
component’s security state restrict the assumptions that can be made
on the other components. FATHoM includes a set of rules to compute
the derived security states from the assumptions and the components’
relations. A further set of relations and rules is used to define how to
protect the derived vulnerable components. The resulting system is then
analysed, among others, for consistency of the threat model. We have
developed a tool that implements FATHoM, and have validated it with
use-cases adapted from the literature.

1 Introduction

Addressing security concerns in computing systems requires careful considera-
tion of the threats, usually described through threat models. But for virtualized
systems, attacks, solutions and threat models have evolved considerably over
the years [10]. Before presenting a security solution, research papers usually de-
scribe their assumptions on the environment where the solution is meant to be
deployed. However, threat models are given in a descriptive rather than a formal
syntax, which is also not standardized. As a consequence, many publications rely
on implicit, and different, assumptions or lack clarity in their assumptions for
which there is no commonly understood semantics. For example, different terms
are used to refer to a component assumed to be insecure such as “malicious”,
“untrusted”, “in control of the attacker”, when the underlying assumption is
whether the component is inside or outside the trusted computing base (TCB).

We believe that using a precise model for threat modelling in virtualized
systems would help understanding: (i) the meaning of each assumption, by har-
monizing the terminology; (ii) whether the threat model has included all the
required assumptions at all architectural levels; and (iii) whether these assump-
tions are consistent. Currently, the relations among components, and how as-
sumptions on one component impact (e.g., restrict) assumptions that can be
made on other components, are usually not considered. We propose a model,
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FATHoM, that allows developers and system designers to precisely state the
conditions under which a component can be assumed trusted (or untrusted)
given that another component is assumed trusted (or untrusted). FATHoM al-
lows designers to define and analyse a threat model to determine whether it is
consistent and complete. The framework, which can be applied with fine granu-
larity, can also be used to describe how components are protected. Furthermore,
the framework is compositional.

The main contributions of this work are:

– a precise notation to define threat models (FATHoM), which considers the
components’ security states, the relations among them, and the rules to com-
pute the derived security states based on the assumptions and the relations;

– a set of relations and rules used to define how to protect vulnerable compo-
nents, derived by checking the threat model definition for consistency;

– a prototype tool that implements FATHoM that can be used to define and
analyse threat models. FATHoM allows system designers to check the threat
model for consistency, completeness, and equality among threat models given
a subset of required states.

The paper is structured as follows. In Sect. 2 we list some existing threat mod-
els and discuss their limitations. In Sect. 3 we describe FATHoM, including the
assumptions, relations and the composition rules. Sect. 4 describes how threat
models are defined in the FATHoM prototype tool, and how they can be anal-
ysed. In Sect. 5 we show some instantiations of threat models using our approach.
Sect. 6 discusses related works, while we conclude in Sect. 7.

2 Current Threat Models in Virtualized Systems

Virtualization is a technique used to emulate in software the physical properties
of a computer, which is encapsulated in a virtual machine (VM) managed in-
dependently from other VMs. This allows physical resources such as processor,
memory, storage and I/O channels, to be shared between concurrent VMs, while
preserving isolation. This enables a more efficient use of the resources, e.g. on
Cloud computing datacenters, as they can be allocated on-demand. A virtual
machine monitor (VMM) is the software component that creates, manages and
monitors VMs. In virtualized systems, the assumptions described in a threat
model form the basis from which security control is enforced. For example, if
in one threat model physical access is not considered possible, attacks trying to
subvert the VMM from the lower levels may not be taken into account by the
solution, but may still exist. Similarly, if the threat model assumes the VMM to
be with no (exploitable) bugs, whereas the OS is vulnerable, then a proposed
protection solution can be deployed directly inside the VMM while considering
attacks against the kernel as possible. Threat models have considerably evolved
over the years, in an attempt to cope with novel attacks. However, we lack a
standard approach to define and analyse the threat models, which is used across
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the research community [10]. Some approaches, such as STRIDE [11], allow de-
signers to draw trust boundaries across components, and check for a set of known
(classes of) vulnerabilities. However, they are not used to check if the definition
of threat model is consistent and, furthermore, it is not possible to perform
custom analysis, e.g. to compare two threat models for equality. Note that in-
consistencies in the description of a threat model can arise as the exact meaning
of each assumption is not precise, and how assumptions on a component are re-
lated to assumptions on other components is not defined. It is therefore difficult
to compare two threat models because, even if they appear similar, they could
mean different things to their designers. Furthermore, if some component is not
included in the model, the consequences to the trustworthiness of the model,
when this component exists in the real world, are not determined. Concerning
the nomenclature, the most common set of assumptions encountered in the lit-
erature is expressed using a terminology that includes terms such as trusted,
vulnerable (or exploitable), untrusted or malicious. However, the words are not
used consistently, or with a well understood semantics. Our goal is to provide a
framework that enables the definition of the threat models more precisely and
clearly. The properties and features of the model we want to provide are: (i) it
should be easy to define a threat model based on this framework; (ii) it should be
clear what the assumptions are; (iii) the threat model should be consistent and
complete; (iv) it should be possible to compose several components together.

3 Language for the Threat Models

The system we represent is composed of different components that have different
security properties (also called security states), and different relations between
them. We denote by A the nonempty set of components of the system:

A ::= {A,B,C, · · · }.

Components can be added or removed from the system. We denote by Insert
the function for adding a new component to the system, and by Remove the one
that removes a component from the system:

Insert(A, E) := A ∪ {E} Remove(A, D) := A\{D}

where E is a new component inserted to A, while D is removed from A.
We denote by Φ the set of all formulas of our system. Given the set of

components, A, the formulas of our system φ ∈ Φ, are defined by the grammar:

φ ::= true | false | φ ∧ φ | φ ∨ φ | φ→ φ | (φ) | π | ¬π | ρ
π ::= υ(A), where υ ∈ V ρ ::= %(A,A), where % ∈ R

where A is a component of our system (A ∈ A), V is the set of all security
properties of the components, andR the set of all relations between components.
The connectors ∧, ∨,→, (, ), and ¬ are the standard ones. Through our language,
we can define a set of rules which governs how the relations are used to compute
the different properties of the components starting from other properties.
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3.1 Security Properties of Components

The components of our system can have different security properties, for simplic-
ity just properties, which are associated with their trustworthiness, reliability and
restorability values. We divide the properties of our system in basic, high-level,
derived and accessory properties, respectively divided in the following sets VB,
VH, VD, VA, as represented in Table 1. These sets compose the set of properties
of our system: V = VB ∪ VH ∪ VD ∪ VA.

VB = {assContr, assSafe, assProt}
VH = {assTrust, assV uln, assUntrust, assMalic}
VD = {derContr, derSafe, derProt, derTrust, derV uln, derUntrust, derMalic}
VA = {derCanBeCompr, derCanBeExpl, derIsProt}

Table 1: The Security Properties Sets for FATHoM

The designer has to specify only the assumptions of the basic properties,
which are the most important ones. The rest of the properties are mostly syn-
tactic sugar and can be derived from the basic properties and the relations. The
high-level properties, VH, are constructed from the basic ones. As the high-level
properties are commonly used, the designer sometimes specifies these proper-
ties instead of the basic ones. We distinguish between the derived and accessory
properties (VD and VA) of the system components and the assumed ones that
are given by a designer. For sake of simplicity we will consider the high-level,
derived, and accessory properties as properties of their own.

Basic Properties. The basic properties represent the main assumptions we can
make about the properties of a component. These define whether the compo-
nents are assumed to be under control of the defenders or the attackers, by
using the controlled property (trustworthiness), assContr and ¬assContr re-
spectively. When a component is controlled, we consider whether it is assumed
to be exploitable or not by attackers (reliability), and thus can be compromised.
We use the properties assSafe, and ¬assSafe, respectively for a reliable com-
ponent and an exploitable (vulnerable) one. If the component is compromised
(¬assContr), we consider whether it can be protected or not (restorability), and
introduce protectable or unprotectable, respectively assProt and ¬assProt.

Derived Properties. The system also includes the derived version of the assumed
properties: derContr, derSafe, and derProt, taken from VD. Note that the re-
lations between these properties are the same as their assumed version. Thus,
we omit the assumed/derived prefix for them in Fig. 1, which shows the security
properties associated with system components. When a component is Controlled
the relevant properties are Safe and Vulnerable, which specify whether a com-
ponent A cannot be compromised (Safe(A)) or is vulnerable (¬Safe(A)), be-
cause it has known vulnerabilities or is believed it can be maliciously exploited
by an attacker. This property identifies components that need to be protected.
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Alternatively, if a component is Compromised (and thus not controlled), the
relevant properties are Protectable and Unprotectable, which specify whether a
compromised component A can be protected (Prot(A)) or not (¬Prot(A)). The
difference with the previous case is that a Vulnerable component can always be
protected, since it is Controlled, whereas an Unprotectable component refers to
a Malicious component, such as an external attacker, a malicious provider, or
more generally any external component already compromised and that impacts
the security properties of other components, and cannot always be reverted to
the Controlled state.

Fig. 1: Security Properties

High-Level Properties. Let us introduce FATHoM’s high-level properties, which
can be defined from the basic ones. We define a component A assumed trusted,
if it is assumed controllable and safe:

assTrust(A) := assContr(A) ∧ assSafe(A).

A component is assumed vulnerable, if it is assumed controllable and not safe:

assV uln(A) := assContr(A) ∧ ¬assSafe(A).

A component is assumed untrusted, if it is assumed not controllable (compro-
mised) but is assumed protectable:

assUntrust(A) := ¬assContr(A) ∧ assProt(A).

Finally, a component is assumed malicious, if it is assumed not controllable and
not protectable:

assMalic(A) := ¬assContr(A) ∧ ¬assProt(A).

We represent the rules between these properties and the basic ones in Table 2.

assTrust(A) → assContr(A) assTrust(A) → assSafe(A)

assV uln(A) → assContr(A) assV uln(A) → ¬assSafe(A)

assUntrust(A) → ¬assContr(A) assUntrust(A) → assProt(A)

assMalic(A) → ¬assContr(A) assMalic(A) → ¬assProt(A)

Table 2: Derivation Rules Between Basic and High-Level Properties in FATHoM
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In Table 3 we show the semantics of each combination, and give examples of
their occurrence in virtualized systems. Recalling the terms discussed in Sect. 2,
which are used frequently in related works, if we compare our nomenclature
with these terms, we can see that the combinations of security properties in
Table 3 correspond to (from top to bottom): Trusted (assTrust), a component
that is assumed to be trustworthy; (ii) Vulnerable (assV uln), a component that
can have bugs and/or can be attacked but is not in the hand of the attacker;
(iii) Untrusted (assUntrust), assuming that an attacker has full control of this
component; (iv) Malicious (assMalic), i.e., a component that is compromised
by the attacker and cannot be recovered or protected.

assContr assSafe assProt Meaning Examples High-Level Property

3 3

A component that is assumed not
to have been compromised and
that cannot be exploited.

A micro-kernel OS formally
verified, or an app that is
protected from integrity attacks
from lower levels, or where the
attacker has no access.

Trusted
(assTrust)

3 7

A component that is assumed not
to have been compromised but
that can be compromised in the
future due to a vulnerability.

An OS with bugs during the boot,
where the attacker has not direct
access to it but can, for example,
access it remotely.

Vulnerable
(assV uln)

7 3

A component that is assumed to
be compromised and that can be
protected.

The OS kernel in a VM, assumed
to be compromised, and that is
protected at run-time through the
hypervisor for control-flow
integrity attacks.

Untrusted
(assUntrust)

7 7

A component that is assumed to
be compromised and that cannot
protected.

An external component (the
attacker has full control of it) on
which the security solution cannot
do anything to change its state.

Malicious
(assMalic)

Table 3: Combinations of Security Properties for Components

3.2 Relations and Derivation Rules

In FATHoM components can have the following relations between them:

R := {Contr, Threat, Protect, Ign, Contain,Group,Merge}.

Contr defines a binary relation, where Contr(A,B) means that component
A controls component B, e.g., when A is at lower virtualisation layer than B, or
A is more privileged than B. Therefore, A can (potentially) change B’s security
properties by attacking or protecting it. This relation is already given to the
system, or it can be implied by other relations. Contr is transitive.

Threat defines a binary relation, where Threat(A,B) means that component
A can threaten (attack) component B. Thus, A may be able to exploit B’s
vulnerabilities, e.g., when A is a remote attacker and B a reachable server from
the Internet, or A is a component at a higher level (e.g., application) and B
one at a lower level (e.g., OS). A successful attack must be carried out by a
compromised component A against a vulnerable one B. Component A threatens
an other component B because of the design of the system, or if A controls B
and component A is assumed/derived compromised.

Contr(A,B) ∧ (¬assContr(A) ∨ ¬derContr(A)) → Threat(A,B)
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Some examples of these relations, in the context of virtualized systems, are shown
in Fig. 2.

Fig. 2: Examples of Controls and Threatens Relations

As we focus on threat models, we consider the worst-case scenario. This
means that, for example, if A controls B, and A is assumed not controlled, then
we cannot assume B to be controlled. Thus, we consider as not controlled all
components that could be compromised within our knowledge. We can now in-
troduce one of the accessory properties from VA, which is the can be compromised
property, derCanBeCompr, that can be derived from the above relation. We say
that B can be compromised, if it is controlled by a compromised component, or
if B is threatened by a compromised component and B is vulnerable:

((Contr(A,B) ∧ (assContr(B) ∨ derContr(B)))
∨(Threat(A,B) ∧ (¬assSafe(B) ∨ ¬derSafe(B))))

∧(¬assContr(A) ∨ ¬derContr(A) ∨ derCanBeCompr(A)) → derCanBeCompr(B).

The derived versions of the high-level properties: derTrust, derV uln, derUntrust,
and derMalic, which are part of VD, are defined as follows:

derTrust(A) := ¬derCanBeCompr(A) ∧ assTrust(A)
derV uln(A) := ¬derCanBeCompr(A) ∧ assV uln(A)

derUntrust(A) := derCanBeCompr(A) ∨ assUntrust(A)
derMalic(A) := assMalic(A).

We represent in Table 4 the derivation rules between derived properties. Finally,
the Ign (Ignore) relation, used to ignore components, forces the model to assume
a given component as trusted: Ign(A)→ assTrust(A).

derTrust(A) → derContr(A) derTrust(A) → derSafe(A)
derV uln(A) → derContr(A) derV uln(A) → ¬derSafe(A)
derUntrust(A) → ¬derContr(A) derUntrust(A) → derProt(A)
derMalic(A) → ¬derContr(A) derMalic(A) → ¬derProt(A)

Table 4: Derivations rules between derived properties in FATHoM

3.3 Composability

We further introduce the possibility of composing components together, by ex-
ploiting three compositional relations: Contains, Groups and Merges. They are



8

respectively used to: (i) enforce consistency among the state of a composite com-
ponent and the state of its set components; (ii) simplify the description of the
threat model, by grouping components together; (iii) abstract from inner com-
ponents by introducing a new component that summarizes their security states
and relations.

Contain(A,B) ∧ Contain(B,C) → Contain(A,C) (1)

Contain(A,B) ∧ assTrust(A) → assTrust(B) (2)

Contain(A,B) ∧ assV uln(A) → assV uln(B) (3)

Contain(A,B) ∧ assUntrust(A) → assUntrust(B) (4)

Contain(A,B) ∧ assMalic(A) → assMalic(B) (5)

Group(A,B) ∧Group(B,C) → Group(A,C) (6)

Group(B,C) ∧ Contr(A,B) → Contr(A,C) (7)

Group(A,B) ∧ Contr(A,C) → Contr(B,C) (8)

Group(B,C) ∧ Threat(A,B) → Threat(A,C) (9)

Group(A,B) ∧ Threat(A,C) → Threat(B,C) (10)

Group(A,B) ∧Group(C,D) ∧ Contr(A,C) → Contr(B,D) (11)

Group(A,B) ∧Group(C,D) ∧ Threat(A,C) → Threat(B,D) (12)

Merge(C,A) ∧ Contr(A,B) → Contr(C,B) (13)

Merge(C,A) ∧ Threat(A,B) → Threat(C,B) (14)

Merge(C,A) ∧ assTrust(A) → assTrust(C) (15)

Merge(C,A) ∧ assV uln(A) → assV uln(C) (16)

Merge(C,A) ∧ assUntrust(A) → assUntrust(C) (17)

Merge(C,A) ∧ assMalic(A) → assMalic(C) (18)

Table 5: The Composability Rules in FATHoM

Contain is a binary relation, where Contain(A,B) means that A contains
B, and all of A’s internal components must have the same security property
as A. This is useful when an external component always includes an internal
one, such as a VM that includes the OS, and the security states need to be
coherent among them. This relation is transitive given the assumptions in the
internal components, represented in Table 5 (1)-(5). Group is a binary relation,
where Group(A,B) means that A is a new (virtual) component, which groups B
(together with, possibly, other components). In this case A is a new component,
and Group is consistent in terms of Contr and Threat relations, as shown in
Table 5 (6)-(12). The last composability relation is Merge, where Merge(A,B)
means that a new component A is used to consolidate all the internal components
(B, and possibly other components) into a new one and merges their states and
relations, as represented in Table 5 (13)-(18). The internal components are no
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longer considered, and assumptions and relations can be now expressed about
A. This is useful when we want to consider several, similar, components in a
single one with the same properties. The difference between Groups and Merges
is that the Groups relation is only used to facilitate the definition of several
rules and assumptions on several components together, but the external (virtual)
component is not used by the rules, only the internal (real) ones. Instead, Merges
is used to remove from the model similar components and replaces them by a
new (real) one. In this case, the assumptions and the relations are firstly given
on the internal component B, and applied to the external one. Note that a
precondition to merge components together is that they are similar, i.e., there
are no conflicts. An example of these three relations is shown in Fig. 3.

Fig. 3: Contains (a), Groups (b) and Merges (c) Relations

3.4 Protecting Components

We introduce in FATHoM two versions of the Protect relation. This relation is
given by the system/designer, and through it we can derive a very important
security property derIsProt, which defines the property of a component being
protected. The first version of Protect is a binary relation, where Protect(A,B)
means that A can protect component B from the threats considered in the
model. The second version is a ternary relation, where Protect(A,C,B) means
that component A can protect component B, with the help of a new component
C. This relation is reflexive, where Protect(A,C,A) means that component A
can protect itself, with the help of a new component C (that enhances A). For
the ternary Protect relation, the new component C is inserted in the set of
components of A. We show these relations in Fig. 4 (for the sake of readability,
we split the ternary relation in two cases, a) and c)).

The Protects relations are used to define the derIsProt property, which
means that a component is in the state of being protected. There are four cases
when we can derive that a component is protected, as shown in Table 6. We say
that A is protected when it is derived trusted, as shown in (19). We say that A
is protected when there exists a controlled component B that protects A (and
B can control A), in case A is not safe or protectable, as shown in (20). We say
that A is protected when there exists a controlled component B that protects
A, with the help of another component C, where B controls A and A is not safe
or protectable, as shown in (21). In this case, C is a new component, inserted
in the set of components, that is contained in B, and is assumed controlled or
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Fig. 4: Rules Protects Relation: a) Using a Patch, b) Using an External Compo-
nent, c) Enhancing an External Component with a Patch

derTrust(A) → derIsProt(A) (19)

Protect(B,A) ∧ Contr(B,A) ∧ derContr(B) ∧
(¬derSafe(A) ∨ derProt(A)) → derIsProt(A)

(20)

Protect(B,C,A) ∧ Contr(B,A) ∧ derContr(B) ∧
(¬derSafe(A) ∨ derProt(A)) ∧ Insert(A, C) ∧
Contain(B,C) ∧ (assContr(C) ∨ Contr(B,C)) → derIsProt(A)

(21)

Protect(A,C,A) ∧ derContr(A) ∧
(¬derSafe(A) ∨ derProt(A)) ∧ Insert(A, C) ∧
Contain(A,C) ∧ (assContr(C) ∨ Contr(A,C)) → derIsProt(A)

(22)

Table 6: The Four Cases When a Component is Derived Protected

is controlled by B. Finally, we say that A is protected when it can protect itself
with the help of C, where A is controllable, exploitable or protectable, as shown
in (22). In this case, C is a new component, contained in A, assumed or derived
controlled by A. Note that with the current rules, a component is derived Vul-
nerable only if it is assumed so. Furthermore, a component is derived Malicious
iff it is assumed so, using the worst-case rule. However, in some situations, we
need to take into account threat models where a component A is assumed to be
vulnerable and either (i) it is the target of the protection solution itself or (ii) it
is assumed protected by another component (e.g., a vulnerable VMM protected
by a trusted module). Hence, it is assumed, and required for the threat model
definition, that the component is vulnerable. To limit the cascading effect of this
vulnerable component being exploited, we need to check whether it is already
protected. This is captured by one of the properties in VA:

derCanBeExpl(A) := derCanBeCompr(A) ∧ assV uln(A)

where a component is derived exploitable if it can be compromised and it is
assumed vulnerable.

4 Using FATHoM to Define and Analyse a Threat Model

We now discuss the implementation of FATHoM, and how it can be used to
define and analyse threat models.
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4.1 FATHoM Prototype Tool

We have designed and developed a tool implementing FATHoM (available at
http://rissgroup.org/fathom/) that includes in its knowledge base all the
general rules discussed so far. The tool is used also to load a template with
the components and relations. A graphical interface facilitates the description
of the threat model, which is converted into FATHoM language. (An example
of a template is described in Sect.5.) After loading the template, the user can
customize some components, and then specify the security states of the compo-
nents. Finally, the FATHoM tool compiles the threat model (derived from the
template and the user choices) and the model’s rules into an executable program
for XSB1. After converting the threat model and the rules for XSB, a designer
can query the FATHoM tool to analyse the system: to display those components
whose assumed state is different from the derived ones (i.e., a consistency check);
to add protection components and exploit the Protects relations. At this point,
FATHoM re-compiles the updated threat model (i.e, the derived initial model
plus the new protection components and relations), and shows the derived and
final threat model.

4.2 Definition of the Threat Model

The following steps are used to define threat models within our model: (i)
FATHoM loads the rules already defined for all domains, i.e., Controls and
Threatens; (ii) the user defines (or imports an existing) template that includes
the components’ ontology for the domain of interest (e.g., virtualized system),
which defines: the components specific to the domain and the Controls and
Threatens relations on these components; (iii) the user selects those components
that need to be Merged (if any) and those to Ignore (if any); (iv) the user can
add new components (optional) or new relations in the model to both existing
or new components (optional); finally, (v) the user sets, for each component, the
assumed value for Trusted or Vulnerable or Untrusted or Malicious. In contrast
to the current, verbose, definitions of threat models, which often span several
pages in research papers, in FATHoM users only need to define the assumed
security states for all the components, e.g., through a table, such as Table 7, or
through a figure, such as Fig. 5b. Not only is the representation very succinct,
but the underlying semantics is also common across all the threat models.

4.3 Derivation and Analysis

Once the model has been defined (and possibly customized), and the values of the
assumptions on the security states has been chosen, FATHoM is used to derive
the security states. FATHoM allows the developer to analyse the consistency
and completeness of the model, and query possible combinations of assumptions
to derive a desired target model. In particular, FATHoM allows the designers

1 http://xsb.sourceforge.net/
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to check if there are some security states whose assumptions are different from
the derived ones. When an inconsistency is found, the developer is asked to only
update the inconsistent assumptions. FATHoM also forces the designers to define
the security states for all the components. When a security state for a component
is not defined, unless the user has specifically chosen to Ignore it, a warning
is returned. Designers can analyse possible solutions to protect the vulnerable
and protectable components in the derived threat model. This can be done by
refining the model as follows: (i) the user introduces new protection components
in the system, such as a hardware co-processor; (ii) the users specifies which
components are used to Protect which other components, e.g. the Vulnerable
ones. Then, FATHoM enables the user to perform the same analyses on the
improved model.

5 Use-Cases Analysis: Virtualized Systems

We show an instantiation of FATHoM for virtualized systems including the tem-
plate we have defined for a use-case scenario.

5.1 Ontology of Components and Relations

The components we model in this template are defined at four layers: (i) virtual-
ization level: OS, application (APP), administrative VM (AVM), co-resident VM
(CO-VM), VT-Driver-domain (i.e., a VM that interfaces all the request to the
devices using shared drivers); (ii) hypervisor level: VMM, VMM interface; (iii)
firmware level: BIOS (or UEFI), SMM; (iv) hardware level: DMA, Trusted Boot,
which can be specialized in static-root-of-trust (SRTM), dynamic-root-of-trust
(DRTM), Intel SGX [2], Memory (MEM), which can be refined into RAM and
L2-Cache, CPU2. We augment these elements with additional ones to consider
further threats. In detail, when the virtualized environment is run by an exter-
nal provider, the trust placed in that provider also needs to be considered [5]
[14] [7] [9]. Hence, other components that we introduce are: (i) physical-access:
a component that defines whether physical access is possible for the attacker;
(ii) actors: the Cloud service provider (CSP), the tenant and a generic external
attacker. Note that for some components, such as actors and physical-access,
the only relevant security state is the Controlled/Compromised one, which is
semantically equivalent to the component being trusted or not, whereas the Pro-
tected/Vulnerable may not need to be considered. Hence, we will restrict their
security states to Trusted and Malicious only. Furthermore, the actors in the
system can be further refined if we consider entities such as the manufacturer
of the hardware used by the provider, the developers of the software run by the
provider, and, in general, any third-party involved with the Cloud provider [3].

The template we have defined includes the following relations: (i) we Group
the components at the hardware-, firmware-, hypervisor- and virtualization-level;

2 Further components that could be considered here are virtualization extensions,
chipset, hard-disk firmware.
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(ii) any element at lower-levels can Control those at higher ones (and physical
access Controls all the levels); (iii) the Tenant Controls the user VM; (iv) the
remote attacker Threatens all the Virtualization level and VMM; (v) the CSP
Controls all the VMs, the VMM and lower levels; (vi) the VT-d Threatens the
VM, VMM; (vii) the AVM Controls the VM, VMM; (viii) the Co-resident VM
Threatens the VM, VMM. These relations used on the previous ontology give
rise to the template shown in Fig. 5a.

(a) FATHoM Template for Virtualized
System: Components and Relations

(b) Use-Case of Assumptions on a
FATHoM Threat Model

Fig. 5: FATHoM Template and Initial Assumptions

5.2 Analysis of the Threat Model

Defining the Threat Model and Checking for Inconsistencies. This analysis is
used to identify inconsistencies in the threat model’s assumptions, by showing
the derived security states that are different from the assumed ones. In this
use-case, we firstly customize the template depicted in Fig. 5a to adapt it to
the description of this use-case. Here, we consider a threat model that assumes
the VMM to be Vulnerable, the tenant and remote attacker to be Malicious,
and co-resident VM to be Untrusted. The goal, from the point of view of the
provider, is to protect the OS from attacks by tenants and remote attackers by
enhancing the VMM to check the integrity of the OS. This use case is adapted
from [15], [13]. In particular, we consider that a trusted boot-based solution
is used to protect the loading of the hypervisor. Then, the provided solution
will describe how a new component inside the VMM is used to protect the OS.
In detail, we use the FATHoM compositional rules on the template as follows:
(i) we Merge RAM and L2Cache into MEM; (ii) we Merge SRTM and DRTM
into a single Tboot component; (iii) we Merge BIOS and SMM into a Firmware
component; (iv) MEM and CPU are Ignored ; (v) SGX is Ignored. We then set
the assumptions on the security states as shown in Fig. 5b (the relations are not
shown, since after loading the template we only need to define the assumptions).
This graphical description is then translated in the FATHoM syntax, and then
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compiled for XSB. By using these assumptions, and by querying the FATHoM
tool for inconsistencies among assumptions and derived states, FATHoM shows
that the components App, OS, AVM, Co-VM and hypervisor are inconsistent3.
These components are those whose assumed states is different than the derived
one. In this specific case, FATHoM shows that, by letting the attacker being able
to threaten the hypervisor, he/she can compromise the AVM and Co-VM too, as
well as the OS and App, and this is not consistent with the initial assumptions.
Furthermore, the tenant can compromise the OS. Note that, since in this use-
case we have assumed the VMM to be vulnerable, but protected by a Tboot
solution4, we need to update the model with the relations to protect the VMM
from Tboot, and check the model again. By querying FATHoM we see that
the hypervisor is consistent with the assumptions, and, hence, we only need to
change the App and OS to “untrusted” to be consistent. We have now an initial
consistent threat model, whose instantiation is shown in Table 7. As we can see,
the formulation of the threat model is very succinct.

Component Trusted Vulnerable Untrusted Malicious

APP 3

OS 3

Co-VM 3

Vt-Driver 3

AVM 3

Hypervisor 3

Firmware 3

Tboot 3

DMA 3

Physical Access 3

CSP 3

Tenant 3

Remote Attacker 3

Table 7: Components and Assumptions of the Use-Cases

Protecting the Components and Derivation Analysis. On this stable threat model,
we then introduce a patch in the VMM to protect the OS5. Then, by recompil-
ing the threat model with the new protection component, and its relation(s), we
query the FATHoM tool again to check the derived Protected components. In
this case, FATHoM derives VMM and OS as Protected as well.

3 For the sake of conciseness, we do not show the complete rules, ontology, as-
sumptions, and analysis in XSB here. All the examples are available at http:

//rissgroup.org/fathom/, along with a technical report.
4 We only focus on static integrity protection.
5 The description of the patch is outside the scope of the use-case.
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6 Related Work

Mulval [8] is a logic-based analyser that enables the modelling and reasoning
about components’ interaction. The main difference with our model is that in
FATHoM we define assumptions on the security of components, not vulnerabil-
ities or attack paths. Furthermore, our goal is to formalize these assumed secu-
rity states using a common terminology and ontology, and check its soundness.
The CORAS method [4] defines a language, and a set of UML-based diagrams,
for threat and risk modelling. FATHoM differs from CORAS as it focuses only
on threat modelling. Furthermore, FATHoM facilitates the description of the
system’s assumptions, and follows a worst-case approach, instead of a proba-
bilistic one, and can analyse its soundness. The goals are also different: using
CORAS it is possible to implement a risk-evaluation plan, while in our model
we depict a static scenario. Similarly, CySeMoL [12] is a modelling language
targeted at enterprise architectures, to enable administrators to perform a prob-
abilistic inference analysis. The model includes a set of meta-components to
define probabilistic dependencies, attack-paths, preconditions, etc. In FATHoM
we are focused on describing the initial security preconditions of the system in
an easy and sound way, and to take into account generic attacks. Nemesis [6] is
a risk-assessment framework to test Cloud systems, by collecting measurements
on known vulnerabilities of the system components, modelling the threats and
assessing the risk. FATHoM is a framework to define in a consistent way the
threat model and used to reason on generic security solutions valid for a set
of use-cases. Finally, [1] exploits model checking to verify system-level security
properties of interacting VMs, and is focused in particular on distributed access
control policies. Even if the context is similar, i.e., virtualized environment, the
goal of FATHoM is the formalization and analysis of threat models, rather than
the verification of access control policies. In summary, none of the the existing
works allows designers to (i) define in a compact way threat models, and (ii)
perform custom analysis, e.g. to check their consistency. Most existing tools al-
low users to perform predefined queries over such a threat model (i.e., to check
for vulnerabilities), which is supposed to be consistent. Hence, these approaches
and FATHoM are complementary.

7 Conclusion and Future Work

Current threat models lack a common terminology to describe the trusted com-
ponents, and the relations between them. This gives rise to possible inconsis-
tencies, and incompleteness, of the considered definition. This issue may also
impact the assumptions on which a security solution is built upon. In this pa-
per we have proposed FATHoM to describe and analyse threat models and have
demonstrated that in real-world scenarios the usability of the FATHoM model
is very simple, since it only requires to load an existing template, optionally
customize it, and set the assumed values for the security states. We are consid-
ering other attacker’s goals, such as confidentiality, to be defined in the relations
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and rules, and other scenarios (e.g., mobile). Finally, the worst-case assumptions
underlying our model could be mitigated using probabilistic assumptions on the
relations and rules.
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