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Abstract—In this paper, we describe an efficient methodology
to guide investigators during network forensic analysis. To this
end, we introduce the concept of core attack graph, a compact
representation of the main routes an attacker can take towards
specific network targets. Such compactness allows forensic inves-
tigators to focus their efforts on critical nodes that are more
likely to be part of attack paths, thus reducing the overall
number of nodes (devices, network privileges) that need to be
examined. Nevertheless, core graphs also allow investigators to
hierarchically explore the graph in order to retrieve different
levels of summarised information. We have evaluated our ap-
proach over different network topologies varying parameters
such as network size, density, and forensic evaluation threshold.
Our results demonstrate that we can achieve the same level
of accuracy provided by standard logical attack graphs while
significantly reducing the exploration rate of the network.

I. INTRODUCTION

Over the last years, the rise in cyber security threats
combined with the sustained growth of networks involving
multiple classes of devices has become an extremely challeng-
ing problem to network and security administrators. In 2016
alone, 6449 vulnerabilities were published by NIST and ap-
proximately 58% of them have been classified as high severity
or critical vulnerabilities [29]. That is roughly 10 new non-
negligible vulnerabilities per day on average. As the Internet
of Things continues to evolve and the involvement of cyber-
physical systems comes into scene, understanding security
risks at a large scale becomes even more convoluted [11], [31].
Such reality makes it just too hard for security teams to keep
up with the speed and diversity of the threat landscape over
large complex networks. Therefore, there is a critical need for
efficient tools able to handle available security information and
help practitioners to broadly analyse network weaknesses and
timely understand how security issues might be combined to
amplify the attack surface (e.g. APTs [38]).

In that context, forensic investigations constitute a critical
activity to ensure the health of a network at every operational
level [43]. When an attack is identified, time becomes of the
essence, and forensic investigations try to answer questions
such as how the attack took place, who was the perpetrator,
when the intrusion happened, and many more. Attack graphs
[18], [2], [35], [21], [33] constitute a very powerful tool in this
regard, primarily on the how, by assisting the investigator with
information about the routes the attacker could have taken in
order to get to his current location in the network [22]. The

main objective of an attack graph is to depict the many ways
in which an intruder may compromise assets in a network.
However, today’s complex networks pose hard challenges to
the practical use of standard attack graphs which can easily
increase in complexity as networks become denser and larger.

In this paper, we focus on a novel type of attack graph called
core attack graph and its use in the context of network forensic
investigations. Core attack graphs (or simply core graphs)
aim at addressing attack graph complexity by identifying
the main attack avenues towards specific targets in the net-
work. By structurally summarising alternative routes between
any two directly connected vulnerable network nodes, core
graphs render compact representations able to reduce attack
analysis complexity, ease visualisation aspects, and support
efficient subsequent analysis. Our theoretical and practical
results strongly suggest that core attack graphs can widely
support efficient forensic investigations and therefore, having
a significant impact in network security terms. Our main
contributions are: (1) a mathematical model that formalises
the generation and use of core graphs, (2) practical algorithms
for the generation and exploration of core graphs, (3) an
efficient forensic methodology based on attack graphs, and
(4) a thorough comparative evaluation that shows the benefits
of core attack graphs within forensic investigations, including
significant reductions on the network surface exploration rate.

II. RELATED WORK

Attack graphs appear in many forms within the available
literature and are well analysed and classified in scientific
surveys [18], [2], [35], [21], [33]. Generation and visualisa-
tion tools are also covered [44], [17], [6], [16], [30], [13].
Well-known approaches include logical attack graphs [39],
[30], state-based attack graphs [34], hierarchical attack graphs
[15], [27], conservative attack graphs [8], multiple-prerequisite
graphs [16], exploit dependency graphs [28], among others.
While many studies essentially focus on analysis techniques,
the mechanics and underlying objectives considered to produce
attack graphs have a profound impact on the type of analysis
that can be done over the generated graphs. In that context, the
process of generating attack graphs faces hard challenges that
have been well identified by the research community [5], [18],
[19]. Though no consensus exists on a universal definition of
attack graphs, logical attack graphs (LAGs) are probably the
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most widely used [39]. LAGs provide a clear representation
of potential attack paths which makes them highly useful for
forensic investigations. However, as the number of devices and
vulnerabilities increases, logical attack graphs become rapidly
complex, thus challenging their use in practical settings. Core
attack graphs aim at addressing such complexity.

While attack graphs model vulnerabilities and potential at-
tack paths in a network, Wang and Daniels [41], [42] proposed
a new graph model for network forensic analysis based on real
intrusion evidence. These so-called evidence graphs are con-
structed after an attack occurs, mainly using network intrusion
detection systems alerts, but also taking into account network
flow and host logs as secondary evidence. Nevertheless, the
results obtained from such graphs are constrained by the
integrity of the collected evidence. Liu et al. [22] describe
how to map evidence graphs to attack graphs and how they can
be used to refine one another. While evidence information can
be used to fine-tune probabilities in attack graphs, attack paths
can be used to remove unrelated evidence tracks from evidence
graphs. Liu et al. [23] also propose to augment attack graphs
with anti-forensic information that can be used during forensic
investigations to explain absent evidence. Zhang et al. [45]
further demonstrate how attack graphs can be used to detect
tampered evidence (falsified timestamps) in evidence graphs.

III. CORE ATTACK GRAPHS

A. Core graph formalisation

Given a directed graph G, a source node s, and a target node
t, the objective of a core graph is to structurally grasp the main
attack routes from s to t. Like standard attack graphs, nodes
in a core graph represent host privileges (e.g. user, root privi-
leges) while edges are based on reachable host vulnerabilities
that require certain privileges and provide others. Core graphs
are built in a systematic manner by summarising multiple
alternative paths between any two connected nodes in the input
graph G, and keeping in the core graph only the attack paths
that cannot be summarised into any other graph link. We call
these paths core paths. Mathematically, a core path coincides
with what in graph theory is known as an induced path [26].
A path p is an induced path of G if any two adjacent nodes in
p are connected in G and any two non-adjacent nodes in p are
not connected in G. In other words, a core path between two
nodes v0 and vn in G is a path p where each node vi ∈ p only
connects to its immediate subsequent node vi+1 and there are
no shortcuts to any other node ahead in the sequence over G.

Inflated paths, on the other hand, are paths that contain
at least two non-adjacent nodes that are connected in G. In
graph-theoretical terms, the relationship between core paths
and inflated paths is an homeomorphism [20]. We use p′ � p
to denote that p is an inflated path of p′. We now formally
define the concepts of core paths and core graphs.

Definition 1 (Core Path). A path p(v0, . . . , vn) in G =
(V,E), n > 0, is a core path if and only if there is no other
path p′ 6= p such that p′ � p, i.e.:

∀vi ∈ p, ∀k ∈ [2, n− i], (vi, vi+k) /∈ E (1)

In addition, each edge (vi, vi+1) ∈ p structurally reflects
that vi can not only reach vi+1 directly but also summarises
all the alternative paths in which vi can reach vi+1 over G.
Let us consider the example illustrated in Figure 1.

(a) Paths s→ t (b) Inflated path pi (c) Core paths pc1 , pc2

Figure 1: Superimposed paths, inflated path, and core path.
Figure 1a shows a small graph G with multiple paths from s

to t. Figure 1b depicts one possible path pi from s to t. It can
be observed in the original graph G that a is connected to b
and therefore path pi violates Definition 1 since (a, b) ∈ E. On
the other hand, path pc1 ({s, a, b, t}), illustrated in Figure 1c,
constitutes a core path from s to t since no shortcuts occur
according to G, thus pc1 � pi. In addition, the core edge (a, b)
summarises both paths in G, namely, {a, b} and {a, c, d, b}.
Path pc2 ({s, a, c, e, f, t}) is also a core path since nodes a and
t are not directly connected and therefore {c, e, f} cannot be
summarised into any edge. Then, it holds that pc1 � pc2 and
pc2 � pc1 . Note that core paths are not about shortest paths:
pc1 has length 3 while pc2 has length 5.

Definition 2 (Core Attack Graph). Given a digraph G =
(V,E) ∈ G, a source node s ∈ V , and a target node t ∈ V ,
the corresponding core graph CGs,t = (Vc ⊆ V,Ec ⊆ E,ωc) is
the result of a transformation τcg(G, s, t) defined as the union
of core paths from s to t in G as follows:

τcg(G, s, t) ≡ CG
s,t ≡

⋃
p∈PGs,t

p s.t. @p′ ∈ PG
s,t, p

′ � p (2)

where PGs,t is the set of all paths from node s to node t
in G; and ωc : Ec → G is a function that given an edge
(vi, vj) ∈ Ec returns a subgraph H ⊆ G that encodes the
set of all possible paths {p1, . . . , pk} from vi to vj in G.
Function ωc is especially important as it allows to further
explore the information summarised in the core graph in a
hierarchical manner as explained in Section III-C.

Input: G(V,E), Nodes s, t, TemporalPath p, Set L, CG
s,t

Result: Complete core graph CG
s,t(VC , EC)

1 p′ ← p⊕ s; // add s to the end of tmp path p
2 if s ∈ VC then // node s already visited
3 add path p′ to core graph CG

s,t;
4 else
5 N ← outgoingNodes(s,G); // nodes reached by s
6 if t ∈ N then // target t reachable from s
7 p′ ← p′ ⊕ t; // add t to the end of tmp path p′

8 add path p′ to core graph CG
s,t;

9 else
10 L′ ← L ∪N ∪ {s}; // reachable nodes by ancestors
11 foreach node n ∈ N do // explore neighbours of s
12 if n /∈ L then

// recursive call towards node t with n as source
13 genCoreGraph(G,n, t, p′, L′, CG

s,t);
14 end
15 end
16 end
17 end

Algorithm 1: genCoreGraph(args) (RECURSIVE).



B. Core graph generation algorithm

Core graphs are generated upon an input graph G = (V,E)
(e.g. logical attack graph), a source node s, and a target
node t. The generation method, described in Algorithm 1,
involves a systematic and efficient exploration of the input
graph G that yields as a result the corresponding core graph
CGs,t = (VC , EC). Essentially, Algorithm 1 performs a recur-
sive depth-first search (DFS) while carrying, at each recursive
call, the set of nodes reachable by ancestors L in a breadth-
first search (BFS) fashion (neighbours). In the worst case, the
algorithm visits every node in G only once (ensured by step
2), and thus every outgoing connection (edge) is expanded and
recursively analysed only once as well. Therefore, Algorithm 1
runs linearly in the size of the original graph G = (V,E) with
complexity O(|V |+ |E|) in the worst case. The lower bound
is Ω(1) when the target is adjacent to the source node.

Note that a core graph is the result of a transformation
of the original graph that is merely structural, i.e., there are
no specific semantic considerations at this point other than
the connectivity properties encoded in the original graph.
However, our framework provides a solid basis for stochastic
aspects as explained in sections IV-B and VI-A.

C. Core graph hierarchical expansion

Each edge (u, v) in a core graph CGs,t summarises paths
between u and v. However, these paths might be in turn
composed of edges that summarise further paths. Therefore,
there exists an intrinsic structural hierarchy induced by the way
in which edges are summarised into others. In that context, we
define an expansion procedure that progressively augments
the original core graph by expanding its core edges in a
hierarchical manner. This allows us to control the level of
complexity of the core graph. More formally, given a core
graph CGs,t = (VC , EC , ωc), its complete expansion to the
next level in the core edge hierarchy is controlled by the
transformation τhexp : C → C defined as:

τhexp(C
G
s,t) = CG

s,t ∪
( ⋃

e=(u,v)∈EC

{τcg(ωc(e)− e, u, v)}
)

(3)

For each core edge (u, v) in CGs,t, τhexp builds a sub-core
graph from u to v using the original information encoded in G
(retrieved with function ωc) without the edge (u, v). The edge
(u, v) is not considered since it summarises the sub-core graph
we are trying to build. In this manner, τhexp computes the next
level of summarised information for each edge and unifies the
sub-core graphs with the input graph as the resulting one-
level expansion. We denote as CG,δs,t the graph obtained after
expanding the original core graph δ times. Hence, CG,0s,t = CGs,t
(δ=0 means no expansion) and CG,δs,t = τhexp(C

G,δ−1
s,t ). A full

expansion ends when CG,δs,t = LAG(G, s, t) for some δ ∈ N .

IV. FORENSIC MODEL FORMALISATION

A. Investigating graph nodes

Given an attack graph G = (V,E), we model the forensic
investigation of a node m ∈ V (performed by an individual

or an automated tool) as a function F : V → [0, 1] × [0..1]
that returns a tuple F (m) = (rm, cm). The first element,
rm ∈ [0, 1], is a boolean value that represents the compromise
status of node m, that is, the outcome of the forensic exami-
nation over m (0 → not compromised, 1 → compromised).
The second element, cm ∈ [0..1], is a real value between
0 and 1 that captures the confidence level of the forensic
investigator about the compromise status of node m. That is, a
value of 0 indicates that the forensic investigator is completely
unsure about the accuracy of the obtained results while a
value of 1 indicates full confidence about the compromise
status of m. Such uncertainty may arise due to factors such as
lack of evidence, attack complexity, time constraints, among
others. However, different investigators may also have different
levels of expertise. As such, their opinions should be weighed
differently. We model the skills of the investigator with the
parameter λ ∈ [0..1]. Therefore, the dependability of the
forensic result over m is defined as the combination of both
the skills level of the investigator and his confidence about
that specific result as tλm = λ · cm.

If the investigator is very good but is not confident on
a particular evaluation, the trust level of that result will be
low. Conversely, if the investigator is not that good but his
confidence is high, the trust level will be still balanced. The
objective is to provide an overall forensic evaluation able to
balance these aspects on a scale from 0 to 1. An evaluation of
0.5 (middle point) means that the investigator cannot confirm
nor deny that node m has been compromised (complete
uncertainty). An evaluation value towards 1 indicates that the
investigator is more inclined to think the node has been com-
promised, whereas evaluations toward 0 mean the opposite.
The overall forensic evaluation of a node is defined as follows.

Definition 3 (Forensic evaluation e(m)). Given a node m ∈
V , the result of a forensic examination F (m) = (rm, cm) and
the trust level tλm of that result, we define the overall forensic
evaluation of m, e(m)→ [0..1] as:

e(m) =

{
(1−tλm)

2
, if rm = 0

(1+tλm)

2
, if rm = 1

(4)

The evaluation function e(m) returns a real value between 0
and 1 which indicates the level of compromise of node m. The
formulation looks to balance the boolean forensic result (rm)
according to how much we trust in the result. The closer the
result is to the extremes (0 or 1), the more we trust the forensic
evaluation. Note that the evaluation function always returns 0.5
when tλm = 0 whether rm is 0 or 1.

From a theoretical perspective, examining each required
node in the network would provide enough information to
find the most likely exploited attack path. Then, the problem
could be technically solved, for example, using a weighted
variation of the Dijkstra algorithm [9]. However, forensic
examinations are complex and time-consuming, making such
perspective infeasible in real networks. Our approach instead
looks to leverage probabilistic attack graphs combined with the
forensic evidence found along the process in order to reduce
the network surface explored by the forensic investigator.



B. Probabilistic attack graphs

Probabilistic attack graphs are attack graphs enriched with
probabilities that model the likelihood of compromise of each
node in the graph based on their specific characteristics [14],
[35], [32], [40], [12]. CVSS scores [7] are normally used to
model the likelihood of an attacker moving among nodes in
the attack graph. That is, given an edge (m,n) ∈ E(G),
the probability of compromising node n being at node m
(conditional probability p(n | m)) is computed based on the
CVSS scores of the vulnerabilities present in n that can be
reached from m. The unconditional probability of a node m
on the other hand, when computed from the source of the
attack graph, denoted as pm, represents how likely it is for an
attacker to traverse the network and reach m given the current
conditional probabilities encoded in the graph. To compute
unconditional probabilities, we use Bayesian Networks in the
case of acyclic directed graphs [24], [32], [12], and Monte
Carlo simulations [3] otherwise. In the case of core graphs,
the probability of a core link can be computed by analysing
the subgraph encoded in it using the same techniques.

V. FORENSIC METHODOLOGY

A. Exploration strategy

Let G = (V,E) be the input graph of the exploration
procedure (e.g. LAG). Our threat model positions the attacker
in the source node s ∈ V . The forensic process starts when
a graph node n ∈ V is identified as compromised and the
objective is to detect the route that the attacker could have
taken from s to n. The first step is to identify the incoming
links to n and order the neighbours to be explored M =
{m|(m,n) ∈ E} by analysing how likely it is for the attacker
having reached n passing through each node m ∈M . To do so,
we use the unconditional probability of each incoming node
m combined with the likelihood of reaching n as follows:

FPback(n) = [m1,m2, . . .], mi ∈M, s.t.

pmip(n | mi) ≥ pmi+1p(n | mi+1)
(5)

Equation 5 defines the back forensic perimeter to be anal-
ysed from node n, arranged in descending order of likelihood.
The forensic procedure first takes the most likely node m (the
first in the list) and performs an individual forensic evaluation
as described in Equation 4. Based on this forensic examination,
the attack graph G is updated by setting the forensic result as
the unconditional probability of the analysed node m.

As explained before, forensic results might not be conclu-
sive or 100% certain. In that context, we define a confidence
acceptance threshold T as the lower limit to accept nodes as
compromised. Nodes to be considered for further exploration
during the attack tracing procedure are selected as follows:

candidate(m,T ) =

{
1, e(m) ≥ T
0, otherwise

(6)

If node m classifies as a candidate, the procedure continues
from m applying the same technique until the source s is
reached. In order to provide a fair comparison, Algorithm 2
describes the overall strategy to be used with both LAGs

and core graphs. In the case of core graphs, the input graph
G(V,E) is replaced with CGs,n. In the recursive call, G is
replaced by the sub-core graph CGs,m from s to m. This sub-
core graph is needed because the construction of core graphs
is target-dependent, and therefore, not all of the main attack
avenues from s to m might be captured at the first level of the
core graph CGs,n since the target of the latter is n and not m.

Input: G(V,E), Nodes s, n, Set visited, Threshold T , Path p
Result: Attack path p

1 if s == n then // source node reached
2 p← p⊕ s; // add s to the end of path p
3 return success;
4 else
5 L← {m|(m,n) ∈ E(G)}; // incoming core nodes
6 prioritise(L); // order by likelihood as in Equation 5
7 while m = next(L) do // explore backwards
8 if m /∈ visited then
9 visited← visited ∪ {m};

10 if candidate(m,T ) then // as defined in Equation 6
11 traceBack(G, s,m, visited, T, p);
12 if success then
13 p← p⊕ n; // add n to the end of path p
14 return success; // route found
15 end
16 end
17 end
18 end
19 end

Algorithm 2: traceBack(args) (RECURSIVE).

At a technical level, we also integrate a fall-back mode
into the main strategy in case no attack path is found above
the threshold. Therefore, the main algorithm always returns a
path, even with low probabilities. The proposed exploration
strategy is directed by the evidence found in the network and
the advices provided by the probabilities encoded in the attack
graph. Even though the likelihood encoded in the graph might
represent the average attacker (based on CVSS), the evidence
found during the process allows to adjust the search according
to the actions taken by the attacker and thus, adapting to the
attacker’s behaviour to some extent. The trade-off between
accuracy and performance applies to both LAGs and core
graphs: the more we explore the network, the more accurate
the results will be. Using core graphs however, we can analyse
the main attack routes and refine the analysis only on those
that are most likely to have been used by the attacker.

B. Refining most likely exploited attack paths

The main advantage of using core graphs is that forensic
investigations are mostly carried out over the first level of
the core graphs, thus avoiding the forensic evaluation of a
significant number of nodes encoded in the core links. This
technique allows to trace the skeleton of the main attack path
which can be later refined by analysing the subgraphs encoded
in the core links of the path.

In order to fairly compare LAGs with core graphs, we
propose a general refinement method that can be applied to
both approaches. Once a main attack path has been obtained
using Algorithm 2, the objective is to explore each link (m,n)
of such path in order to identify whether the attacker has
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(a) Pseudo-random cyclic graph
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(b) Pseudo-random DAG
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(c) Pseudo-random scale-free network

Figure 2: Performance analysis over different topologies.

exploited the direct link from m to n, or conversely, if an
inflated path between the two nodes has been used instead.
To do so, we define a parameter k that defines the number of
neighbours of node n that will be additionally investigated
in order to determine whether an inflated path from m to
n was used or not. The exploration procedure is similar to
Algorithm 2 and looks for the potential routes between m and
n. However, this time the procedure can fail when no route
is found, in which case the direct link between m and n is
assumed to be the one used by the attacker.

This mechanism allows the refinement of the attack path
found by Algorithm 2 but also alleviates the algorithmic
greediness observed with LAGs. Since the probability of going
from m to n directly will be, in most cases, higher than
that of an inflated path from m to n, Algorithm 2 will
often choose direct links over inflated paths. This happens
because LAGs encode all the information on the same plane
as opposed to core graphs which organise the information in a
hierarchical manner. Therefore, this approach gives the chance
to both LAGs and core graphs to further refine the main attack
avenues and provide more accurate attack paths. We refer to
these methods as LAGki or CGki where i is the number of
additional neighbors investigated. As we show in Section VI,
the refinement method does not need to consider too many
neighbours in order to provide accurate results.

VI. EXPERIMENTAL EVALUATION

A. Technical and experimental setup

The experiments presented in this section have been per-
formed using Naggen, our attack graph generation tool [4],
[25]. We evaluate three different topologies: pseudo-random
cyclic graphs based on the Erdős-Rényi (ER) model [10],
directed acyclic graphs (DAGs), and scale-free networks based
on the Barabási–Albert (BA) model [1], [37]. Attacks are sim-
ulated with a random walk-based mechanism which uses the
information encoded in the attack graph (CVSS probabilities).

B. Performance analysis over different topologies

Figure 2 illustrates the behaviour of our methodology over
cyclic graphs, directed acyclic graphs, and scale-free networks.
The size of the input graph is set to 30 nodes, the forensic
expertise λ is set to 1, the edge creation probability is 0.8
(density of 80%), the probability distribution is based on

CVSS, and the evaluation threshold T is 0.51. Each experiment
performs 50 iterations (50 different input graphs) and averages
the results using LAGs and core graphs for k=0 and k=1.
The first block of each experiment depicts the average sizes
of the input graph, LAG and core graph, as well as the
average number of compromised nodes during attack simu-
lations, nodes present (positive population) and not present
(negative population) in the actual attack path. The second
block shows six measurements of the exploration method
including accuracy, precision, exploration rate, true positive
rate (TPR, hits: nodes in the attack path), false positive rate
(FPR, false alarms: nodes outside the attack path), and false
positive rate over the compromised surface (how many false
alarms are compromised nodes but not part of the attack path).

Figure 2a illustrates the results for cyclic input graphs.
In the first block, we can observe that the core graph
CG(|V |∼7, |E|∼14) (third column) is considerably smaller
than the logical attack graph LAG(|V |∼30,|E|∼651) (second
column). This is because the input graph is highly connected
(ec=0.8) and the core graph is able to summarise a large
portion of it. In the second block, we can see that the accuracy
(first group) with LAGk0 and LAGk1 is close to 100%
while the accuracy with core graphs is 92.27% with CGk0
and 98.80% with CGk1. However, the exploration rate (third
group) is significantly lower when core graphs are used. For
k=1, the network surface explored with the LAG is about
91.87% (∼27 nodes) while only 23.13% (∼7 nodes) of the
input network is explored using the core graph. The TPR
with CGk1 (94.78%) is slightly lower though still acceptable
considering the reduction on the exploration rate. The FPR
is quite low in all of the cases while the FPR over the
compromised surface is 100% with the core graph, which
means that every node misclassified as part of the attack path
was actually compromised nonetheless.

Figure 2b depicts the results over DAGs where the base
line is defined using the LAG size as 100%. LAGs present a
good performance though core graphs still show a significant
reduction on the exploration rate. While the precision with
CGk1 is a bit lower and there are some false alarms (FPR), the
price to pay is still acceptable since the TPR is higher and the
exploration rate (19.76%) is much lower than that of LAGk1
(76.43%). Figure 2c shows the results over scale-free networks
[1], [37] where the core graph CG(|V |∼26, |E|∼55) does not
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Figure 4: Various forensic thresholds.
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Figure 5: Scalability analysis.

reduce much in the number of nodes but it does reduce the
number of edges compared with the LAG(|V |∼30, |E|∼668).
The results are very accurate with all of the methods though
core graphs provide more efficient explorations as observed
with CGk1 (27.60%) against LAGk0 (71.60%) and LAGk1
(98.53%). In summary, CGk1 dramatically reduces the explo-
ration rate while keeping the same accuracy as LAGs.

C. Modifying the densities of the input graphs
The behaviour of the exploration method highly depends

on the shape and size of the core graph, which in turn highly
depends on the structure and density of the input graph. When
the input graph tends to be less dense, with fewer cycles
and more independent paths, the core graph will not show
a significant structure reduction and the exploration rate will
be pretty similar to that obtained with the LAG. However,
real networks tend to be the opposite, i.e. denser and cyclic,
in which case core graphs provide high levels of reduction
when compared with standard attack graphs. Figure 3 shows
the behaviour of the methodology for LAGk1 and CGk1
over cyclic input graphs where the creation of graph edges
is controlled by the parameter ec. It can be observed that the
accuracy level is quite similar for both methods. However, the
LAG-based exploration method requires to investigate a huge
portion of the network and almost every node when the input
network tends to be fully connected. Core graphs, on the other
hand, work better (summarise more information) when the
input graph is denser, and therefore present lower exploration
rates. This is due to the compactness of core graphs which
permits to deliver more efficient forensic investigations since
the exploration surface is highly reduced in most of the cases.

D. Changing the acceptance forensic threshold T
The experiment illustrated in Figure 4 shows the behaviour

of both methods, LAGk1 and CGk1, when the threshold T
varies between 0.5 and 1. In this experiment, we consider
a highly skilled investigator (λ=1) and an edge creation
probability of 0.5. We can observe that both methods show
similar levels of accuracy and also the same patterns on the
exploration rates. This is due to the fact that the investigator
is always certain about the individual forensic evaluations and
therefore, increasing the forensic threshold does not signifi-
cantly affect the exploration mechanism. However, reducing
the confidence of the investigator tends to increase the explo-
ration rate to some extent since more nodes may fall under
the threshold. These factors equally affect both methods so it
is expected to observe a similar behaviour on both of them.

E. Scalability analysis

We have also analysed scalability aspects over cyclic input
graphs of various sizes. The objective here is to understand
whether the size of the input network actually affects the
reduction ratio between both methods, LAGk1 and CGk1.
Figure 5 shows the results on accuracy and exploration
rate for both methods while varying the size of the input
graph between 30 and 100 nodes. For n=30, the average
sizes are LAG(|V |∼30, |E|∼408) and CG(|V |∼18, |E|∼54)
while for n=100 we have LAG(|V |∼100, |E|∼4853) and
CG(|V |∼47, |E|∼397). We can observe similar levels of
accuracy for both methods while the exploration rates also
present the same behaviour. However, core graphs consistently
reduce the network surface to be explored in a significant
manner which confirms our previous observations. We have
also experimented with a P2P-Gnutella network dataset taken
from the Stanford SNAP project [36], which consisted in 6301
nodes and 20777 edges. The obtained core graph, from s=0 to
t=6299, has 1577 nodes (25.03%) and 3212 edges (15.46%).

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we show that forensic investigations supported
by core attack graphs achieve the same level of accuracy
provided by standard logical attack graphs while significantly
decreasing the network exploration rate, and therefore, con-
siderably reducing forensic efforts. We have evaluated both
core and logical attack graphs over various network topolo-
gies, varying parameters such as number of nodes, density,
and forensic evaluation threshold. In particular, core graphs
perform even better when the network has a higher number of
nodes and higher density. This is due to the hierarchical levels
of summarised information provided by core graphs, which
allow investigators to focus their efforts on critical nodes that
are more likely to be part of attack paths, but also to explore
deeper and refine their results when necessary.

We plan to further optimize the use of core attack graphs
in network forensic investigations combining it with evidence
graphs and anti-forensic information. We will also investigate
scenarios where the output of the forensic evaluation of nodes
could be wrong, due to factors such as low-skilled investigators
or zero-day vulnerabilities.
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