Vitorio Paolo Illiano, PhD Thesis
Malicious data injections pose a severe threat to the systems based on Wireless Sensor Networks (WSNs) since they give the attacker control over the measurements, and on the system’s status and response in turn. Malicious measurements are particularly threatening when used to spoof or mask events of interest, thus eliciting or preventing desirable responses. Spoofing and masking attacks are particularly difficult to detect since they depict plausible behaviours, especially if multiple sensors have been compromised and collude to inject a coherent set of malicious measurements. Previous work has tackled the problem through measurements inspection, which analyses the inter-measurements correlations induced by the physical phenomena. However, these techniques consider simplistic attacks and are not robust to collusion. Moreover, they assume highly predictable patterns in the measurements distribution, which are invalidated by the unpredictability of events. We design a set of techniques that effectively detect malicious data injections in the presence of sophisticated collusion strategies, when one or more events manifest. Moreover, we build a methodology to characterise the likely compromised sensors. We also design diagnosis criteria that allow us to distinguish anomalies arising from malicious interference and faults. In contrast with previous work, we test the robustness of our methodology with automated and sophisticated attacks, where the attacker aims to evade detection. We conclude that our approach outperforms state-of-the-a
rt approaches. Moreover, we estimate quantitatively the WSN degree of resilience and provide a methodology to give a WSN owner an assured degree of resilience by automatically designing the WSN deployment. To deal also with the extreme scenario where the attacker has compromised most of the WSN, we propose a combination with software attestation techniques, which are more reliable when malicious data is originated by a compromised software, but also more expensive, and achieve an excellent trade-off between cost and resilience.