Publications

Robustness and Transferability of Universal Attacks on Compressed Models

Neural network compression methods like pruning and quantization are very effective at efficiently deploying Deep Neural Networks (DNNs) on edge devices. However, DNNs remain vulnerable to adversarial examples-inconspicuous inputs that are specifically designed to fool these models. In particular, Universal Adversarial Perturbations (UAPs), are a powerful class of adversarial attacks which create adversarial perturbations that can generalize across a large set of inputs. In this work, we analyze the effect of various compression techniques to UAP attacks, including different forms of pruning and quantization. We test the robustness of compressed models to white-box and transfer attacks, comparing them with their uncompressed counterparts on CIFAR-10 and SVHN datasets. Our evaluations reveal clear differences between pruning methods, including Soft Filter and Post-training Pruning. We observe that UAP transfer attacks between pruned and full models are limited, suggesting that the systemic vulnerabilities across these models are different. This finding has practical implications as using different compression techniques can blunt the effectiveness of black-box transfer attacks. We show that, in some scenarios, quantization can produce gradient-masking, giving a false sense of security. Finally, our results suggest that conclusions about the robustness of compressed models to UAP attacks is application dependent, observing different phenomena in the two datasets used in our experiments.

A.G. Matachana, K.T. Co, L. Muñoz-González, D. Martinez, E.C. Lupu. Robustness and Transferability of Universal Attacks on Compressed Models. AAAI 2021 Workshop: Towards Robust, Secure and Efficient Machine Learning. 2021.

Pre-print on arxiv  Slides Presentation Video

Object Removal Attacks on LiDAR-based 3D Object Detectors

LiDARs play a critical role in Autonomous Vehicles’ (AVs) perception and their safe operations. Recent works have demonstrated that it is possible to spoof LiDAR return signals to elicit fake objects. In this work we demonstrate how the same physical capabilities can be used to mount a new, even more dangerous class of attacks, namely Object Removal Attacks (ORAs). ORAs aim to force 3D object detectors to fail. We leverage the default setting of LiDARs that record a single return signal per direction to perturb point clouds in the region of interest (RoI) of 3D objects. By injecting illegitimate points behind the target object, we effectively shift points away from the target objects’ RoIs. Our initial results using a simple random point selection strategy show that the attack is effective in degrading the performance of commonly used 3D object detection models.

Z. Hau, K.T. Co, S. Demetriou, E.C. Lupu. Object Removal Attacks on LiDAR-based 3D Object Detectors. Automotive and Autonomous Vehicle Security (AutoSec) Workshop @ NDSS Symposium 2021.

Paper

Jacobian Regularization for Mitigating Universal Adversarial Perturbations

Authors: Kenneth Co, David Martinez Rego, Emil Lupu

Universal Adversarial Perturbations (UAPs) are input perturbations that can fool a neural network on large sets of data. They are a class of attacks that represents a significant threat as they facilitate realistic, practical, and low-cost attacks on neural networks. In this work, we derive upper bounds for the effectiveness of UAPs based on norms of data-dependent Jacobians. We empirically verify that Jacobian regularization greatly increases model robustness to UAPs by up to four times whilst maintaining clean performance. Our theoretical analysis also allows us to formulate a metric for the strength of shared adversarial perturbations between pairs of inputs. We apply this metric to benchmark datasets and show that it is highly correlated with the actual observed robustness. This suggests that realistic and practical universal attacks can be reliably mitigated without sacrificing clean accuracy, which shows promise for the robustness of machine learning systems.

Kenneth Co, David Martinez Rego, Emil Lupu, Jacobian Regularization for Mitigating Universal Adversarial Perturbations. 30th International Conference on Artificial Neural Networks (ICANN 21), Sept. 2021.

Pre-print on arxiv

 

Analyzing the Viability of UAV Missions Facing Cyber Attacks

With advanced video and sensing capabilities, un-occupied aerial vehicles (UAVs) are increasingly being usedfor numerous applications that involve the collaboration andautonomous operation of teams of UAVs. Yet such vehiclescan be affected by cyber attacks, impacting the viability oftheir missions. We propose a method to conduct mission via-bility analysis under cyber attacks for missions that employa team of several UAVs that share a communication network.We apply our method to a case study of a survey mission ina wildfire firefighting scenario. Within this context, we showhow our method can help quantify the expected missionperformance impact from an attack and determine if themission can remain viable under various attack situations.Our method can be used both in the planning of themission and for decision making during mission operation.Our approach to modeling attack progression and impactanalysis with Petri nets is also more broadly applicable toother settings involving multiple resources that can be usedinterchangeably towards the same objective.

1st Workshop on Secure and Reliable Communication and Navigation in the Aerospace Domain (SRCNAS) at EuroS&P 2021

Universal Adversarial Robustness of Texture and Shape-Biased Models

Increasing shape-bias in deep neural networks has been shown to improve robustness to common corruptions and noise. In this paper we analyze the adversarial robustness of texture and shape-biased models to Universal Adversarial Perturbations (UAPs). We use UAPs to evaluate the robustness of DNN models with varying degrees of shape-based training. We find that shape-biased models do not markedly improve adversarial robustness, and we show that ensembles of texture and shape-biased models can improve universal adversarial robustness while maintaining strong performance.

Citation: K. T. Co, L. Muñoz-González, L. Kanthan, B. Glocker and E. C. Lupu, “Universal Adversarial Robustness of Texture and Shape-Biased Models,” 2021 IEEE International Conference on Image Processing (ICIP), 2021, pp. 799-803, doi: 10.1109/ICIP42928.2021.9506325.

Paper in IEEE Archive  Pre-print on arxiv

Hazard Driven Threat Modelling for Cyber Physical Systems

Adversarial actors have shown their ability to infiltrate enterprise networks deployed around Cyber Physical Systems (CPSs) through social engineering, credential stealing and file-less infections. When inside, they can gain enough privileges to maliciously call legitimate APIs and apply unsafe control actions to degrade the system performance and undermine its safety. Our work lies at the intersection of security and safety, and aims to understand dependencies among security, reliability and safety in CPS/IoT. We present a methodology to perform hazard driven threat modelling and impact assessment in the context of CPSs. The process starts from the analysis of behavioural, functional and architectural models of the CPS. We then apply System Theoretic Process Analysis (STPA) on the functional model to highlight high-level abuse cases. We leverage a mapping between the architectural and the system theoretic(ST) models to enumerate those components whose impairment provides the attacker with enough privileges to tamper with or disrupt the data-flows. This enables us to find a causal connection between the attack surface (in the architectural model) and system level losses. We then link the behavioural and system theoretic representations of the CPS to quantify the impact of the attack. Using our methodology it is possible to compute a comprehensive attack graph of the known attack paths and to perform both a qualitative and quantitative impact assessment of the exploitation of vulnerabilities affecting target nodes. The framework and methodology are illustrated using a small scale example featuring a Communication Based Train Control (CBTC) system. Aspects regarding the scalability of our methodology and its application in real world scenarios are also considered. Finally, we discuss the possibility of using the results obtained to engineer both design time and real time defensive mechanisms.

Citation

Luca Maria Castiglione and Emil C. Lupu. 2020. Hazard Driven Threat Modelling for Cyber Physical Systems. In Proceedings of the 2020 Joint Workshop on CPS&IoT Security and Privacy(CPSIOTSEC’20). Association for Computing Machinery, New York, NY, USA, 13–24.

Link to paper   Link to Presentation

Procedural Noise Adversarial Examples for Black-Box Attacks on Deep Convolutional Networks (CCS ’19)

Our paper on procedural noise adversarial examples has been accepted to the 26th ACM Conference on Computer and Communications Security (ACM CCS ’19).

official: https://dl.acm.org/citation.cfm?id=3345660
code: https://github.com/kenny-co/procedural-advml

Abstract: Deep Convolutional Networks (DCNs) have been shown to be vulnerable to adversarial examples—perturbed inputs specifically designed to produce intentional errors in the learning algorithms at test time. Existing input-agnostic adversarial perturbations exhibit interesting visual patterns that are currently unexplained. In this paper, we introduce a structured approach for generating Universal Adversarial Perturbations (UAPs) with procedural noise functions. Our approach unveils the systemic vulnerability of popular DCN models like Inception v3 and YOLO v3, with single noise patterns able to fool a model on up to 90% of the dataset. Procedural noise allows us to generate a distribution of UAPs with high universal evasion rates using only a few parameters. Additionally, we propose Bayesian optimization to efficiently learn procedural noise parameters to construct inexpensive untargeted black-box attacks. We demonstrate that it can achieve an average of less than 10 queries per successful attack, a 100-fold improvement on existing methods. We further motivate the use of input-agnostic defences to increase the stability of models to adversarial perturbations. The universality of our attacks suggests that DCN models may be sensitive to aggregations of low-level class-agnostic features. These findings give insight on the nature of some universal adversarial perturbations and how they could be generated in other applications.

Towards More Practical Software-based Attestation

Our paper Towards More Practical Software-based Attestation has been accepted for publication by Elsevier’s Computer Networks Journal.

Authors: Rodrigo Vieira Steiner, Emil Lupu

Abstract: Software-based attestation promises to enable the integrity verification of untrusted devices without requiring any particular hardware. However, existing proposals rely on strong assumptions that hinder their deployment and might even weaken their security. One of such assumptions is that using the maximum known network round-trip time to define the attestation timeout allows all honest devices to reply in time. While this is normally true in controlled environments, it is generally false in real deployments and especially so in a scenario like the Internet of Things where numerous devices communicate over an intrinsically unreliable wireless medium. Moreover, a larger timeout demands more computations, consuming extra time and energy and restraining the untrusted device from performing its main tasks. In this paper, we review this fundamental and yet overlooked assumption and propose a novel stochastic approach that significantly improves the overall attestation performance. Our experimental evaluation with IoT devices communicating over real-world uncontrolled Wi-Fi networks demonstrates the practicality and superior performance of our approach that in comparison with the current state of the art solution reduces the total attestation time and energy consumption around seven times for honest devices and two times for malicious ones, while improving the detection rate of honest devices (8% higher TPR) without compromising security (0% FPR).

A Formal Approach to Analyzing Cyber-Forensics Evidence

Erisa Karafili’s paper “A Formal Approach to Analyzing Cyber-Forensics Evidence” was accepted at the European Symposium on Research in Computer Security (ESORICS) 2018. This work is part of the AF-Cyber Project, and was a joint collaboration with King’s College London and the University of Verona.

Title: A Formal Approach to Analyzing Cyber-Forensics Evidence

Authors: Erisa Karafili, Matteo Cristani, Luca Viganò

Abstract: The frequency and harmfulness of cyber-attacks are increasing every day, and with them also the amount of data that the cyber-forensics analysts need to collect and analyze. In this paper, we propose a formal analysis process that allows an analyst to filter the enormous amount of evidence collected and either identify crucial information about the attack (e.g., when it occurred, its culprit, its target) or, at the very least, perform a pre-analysis to reduce the complexity of the problem in order to then draw conclusions more swiftly and efficiently. We introduce the Evidence Logic EL for representing simple and derived pieces of evidence from different sources. We propose a procedure, based on monotonic reasoning, that rewrites the pieces of evidence with the use of tableau rules, based on relations of trust between sources and the reasoning behind the derived evidence, and yields a consistent set of pieces of evidence. As proof of concept, we apply our analysis process to a concrete cyber-forensics case study.

 

You can find the paper here.

This work was funded from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 746667.

WSNs Under Attack! How Bad Is It? Evaluating Connectivity Impact Using Centrality Measures

Our paper WSNs Under Attack! How Bad Is It? Evaluating Connectivity Impact Using Centrality Measures has been presented at the Living in the Internet of Things: A PETRAS, IoTUK & IET Conference, Forum & Exhibition.

AuthorsRodrigo Vieira SteinerMartín BarrèreEmil C. Lupu

Abstract: We propose a model to represent the health of WSNs that allows us to evaluate a network’s ability to execute its functions. Central to this model is how we quantify the importance of each network node. As we focus on the availability of the network data, we investigate how well different centrality measures identify the significance of each node for the network connectivity. In this process, we propose a new metric named current-flow sink betweenness. Through a number of experiments , we demonstrate that while no metric is invariably better in identifying sensors’ connectivity relevance, the proposed current-flow sink betweenness outperforms existing metrics in the vast majority of cases.

Download a copy here.