Resilient Information Systems Security

Robustness and Transferability of Universal Attacks on Compressed Models

Neural network compression methods like pruning and quantization are very effective at efficiently deploying Deep Neural Networks (DNNs) on edge devices. However, DNNs remain vulnerable to adversarial examples-inconspicuous inputs that are specifically designed to fool these models. In particular, Universal Adversarial Perturbations (UAPs), are a powerful class of adversarial attacks which create adversarial perturbations that can generalize across a large set of inputs. In this work, we analyze the effect of various compression techniques to UAP attacks, including different forms of pruning and quantization. We test the robustness of compressed models to white-box and transfer attacks, comparing them with their […]

Object Removal Attacks on LiDAR-based 3D Object Detectors

LiDARs play a critical role in Autonomous Vehicles’ (AVs) perception and their safe operations. Recent works have demonstrated that it is possible to spoof LiDAR return signals to elicit fake objects. In this work we demonstrate how the same physical capabilities can be used to mount a new, even more dangerous class of attacks, namely Object Removal Attacks (ORAs). ORAs aim to force 3D object detectors to fail. We leverage the default setting of LiDARs that record a single return signal per direction to perturb point clouds in the region of interest (RoI) of 3D objects. By injecting illegitimate points […]

Jacobian Regularization for Mitigating Universal Adversarial Perturbations

Authors: Kenneth Co, David Martinez Rego, Emil Lupu Universal Adversarial Perturbations (UAPs) are input perturbations that can fool a neural network on large sets of data. They are a class of attacks that represents a significant threat as they facilitate realistic, practical, and low-cost attacks on neural networks. In this work, we derive upper bounds for the effectiveness of UAPs based on norms of data-dependent Jacobians. We empirically verify that Jacobian regularization greatly increases model robustness to UAPs by up to four times whilst maintaining clean performance. Our theoretical analysis also allows us to formulate a metric for the strength […]

Universal Adversarial Robustness of Texture and Shape-Biased Models

Increasing shape-bias in deep neural networks has been shown to improve robustness to common corruptions and noise. In this paper we analyze the adversarial robustness of texture and shape-biased models to Universal Adversarial Perturbations (UAPs). We use UAPs to evaluate the robustness of DNN models with varying degrees of shape-based training. We find that shape-biased models do not markedly improve adversarial robustness, and we show that ensembles of texture and shape-biased models can improve universal adversarial robustness while maintaining strong performance. Citation: K. T. Co, L. Muñoz-González, L. Kanthan, B. Glocker and E. C. Lupu, “Universal Adversarial Robustness of Texture […]

Procedural Noise Adversarial Examples for Black-Box Attacks on Deep Convolutional Networks (CCS ’19)

Our paper on procedural noise adversarial examples has been accepted to the 26th ACM Conference on Computer and Communications Security (ACM CCS ’19). official: https://dl.acm.org/citation.cfm?id=3345660 code: https://github.com/kenny-co/procedural-advml Abstract: Deep Convolutional Networks (DCNs) have been shown to be vulnerable to adversarial examples—perturbed inputs specifically designed to produce intentional errors in the learning algorithms at test time. Existing input-agnostic adversarial perturbations exhibit interesting visual patterns that are currently unexplained. In this paper, we introduce a structured approach for generating Universal Adversarial Perturbations (UAPs) with procedural noise functions. Our approach unveils the systemic vulnerability of popular DCN models like Inception v3 and YOLO […]

MUSKETEER: Machine learning to augment shared knowledge in federated privacy-preserving scenarios

The massive increase in data collected and stored worldwide calls for new ways to preserve privacy while still allowing data sharing among multiple data owners. Today, the lack of trusted and secure environments for data sharing inhibits data economy while legality, privacy, trustworthiness, data value and confidentiality hamper the free flow of data. By the end of the project, MUSKETEER aims to create a validated, federated, privacy-preserving machine learning platform tested on industrial data that is inter-operable, scalable and efficient enough to be deployed in real use cases. MUSKETEER aims to alleviate data sharing barriers by providing secure, scalable and […]

Label Sanitization against Label Flipping Poisoning Attacks

Andrea Paudice, Luis Muñoz-González, Emil C. Lupu. 2018. Label Sanitization against Label Flipping Poisoning Attacks. arXiv preprint arXiv:1803.00992. Many machine learning systems rely on data collected in the wild from untrusted sources, exposing the learning algorithms to data poisoning. Attackers can inject malicious data in the training dataset to subvert the learning process, compromising the performance of the algorithm producing errors in a targeted or an indiscriminate way. Label flipping attacks are a special case of data poisoning, where the attacker can control the labels assigned to a fraction of the training points. Even if the capabilities of the attacker […]

Detection of Adversarial Training Examples in Poisoning Attacks through Anomaly Detection

Andrea Paudice, Luis Muñoz-González, Andras Gyorgy, Emil C. Lupu. 2018. Detection of Adversarial Training Examples in Poisoning Attacks through Anomaly Detection. arXiv preprint arXiv:1802.03041.    Data poisoning is one of the most relevant security threats against machine learning systems, where attackers can subvert the learning process by injecting malicious samples in the training data. Recent work in adversarial machine learning has shown that the so-called optimal attack strategies can successfully poison linear classifiers, degrading the performance of the system dramatically after compromising a small fraction of the training dataset. In this paper we propose a defence mechanism to mitigate the effect […]