Argumentation Reasoning

AF-Cyber: Logic-based Attribution and Forensics in Cyber Security

Connected devices will continue to grow in volume and variety. The increase of connectivity brings a drastic impact on the increase of cyber attacks. Protecting measurements are not enough, while finding who did the attack is a crucial for preventing the escalation of cyber attacks. The impact of forensics in cyber security is becoming essential for the reduction and mitigation of attacks. Forensics and attribution forensics come along with their own challenges, like the difficulties on collecting suitable evidence, and the vastness of anti-forensics tools used by the attackers to cover their traces.

The main goal of AF-Cyber is to investigate and analyse the problem of attributing cyber attacks. We plan to construct a logic-based framework for performing attribution of cyber attacks, based on cyber forensics evidence, social science approaches and an intelligent methodology for dynamic evidence collection. AF-Cyber will relieve part of the cyberattacks problem, by supporting forensics investigation and attribution with logical-based frameworks representation, reasoning and supporting tools. AF-Cyber is multi-disciplinary and collaborative, bridging forensics in cyber attacks, theoretical computer science (logics and formal proofs), security, software engineering, and social science.

AF-Cyber received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 746667.

Argumentation-based Security for Social Good

The paper “Argumentation-based Security for Social Good” presented at the AAAI Spring Symposia 2017 is now available at the AAAI Technical Report.

Title: Argumentation-Based Security for Social Good

Authors: Erisa Karafili, Antonis C. Kakas, Nikolaos I. Spanoudakis, Emil C. Lupu

Abstract: The increase of connectivity and the impact it has in ever day life is raising new and existing security problems that are becoming important for social good. We introduce two particular problems: cyber attack attribution and regulatory data sharing. For both problems, decisions about which rules to apply, should be taken under incomplete and context dependent information. The solution we propose is based on argumentation reasoning, that is a well suited technique for implementing decision making mechanisms under conflicting and incomplete information. Our proposal permits us to identify the attacker of a cyber attack and decide the regulation rule that should be used while using and sharing data. We illustrate our solution through concrete examples.

The paper can be found in the following link: https://aaai.org/ocs/index.php/FSS/FSS17/paper/view/15928/15306

A video of the presentation can be found in the workshop page AI for Social Good and also in following link: https://youtu.be/wYg8jaHPbyw?t=33m33s

An argumentation reasoning approach for data processing

The paper “An argumentation reasoning approach for data processing” is now published in the Elsevier Journal Computers in Industry.

Title: An argumentation reasoning approach for data processing

Authors: Erisa Karafili, Konstantina Spanaki, Emil C. Lupu

Abstract: Data-intensive environments enable us to capture information and knowledge about the physical surroundings, to optimise our resources, enjoy personalised services and gain unprecedented insights into our lives. However, to obtain these endeavours extracted from the data, this data should be generated, collected and the insight should be exploited. Following an argumentation reasoning approach for data processing and building on the theoretical background of data management, we highlight the importance of data sharing agreements (DSAs) and quality attributes for the proposed data processing mechanism. The proposed approach is taking into account the DSAs and usage policies as well as the quality attributes of the data, which were previously neglected compared to existing methods in the data processing and management field. Previous research provided techniques towards this direction; however, a more intensive research approach for processing techniques should be introduced for the future to enhance the value creation from the data and new strategies should be formed around this data generated daily from various devices and sources.

This work was supported by FP7 EU-funded project Coco Cloud grant no.: 610853, and EPSRC Project CIPART grant no. EP/L022729/1.

The paper can be found in the following link as Open Access: http://www.sciencedirect.com/science/article/pii/S016636151730338X

Enabling Data Sharing in Contextual Environments: Policy Representation and Analysis

The paper “Enabling Data Sharing in Contextual Environments: Policy Representation and Analysis” was accepted at SACMAT 2017.

ACM Symposium on Access Control Models and Technologies (SACMAT 2017)

Authors: Erisa Karafili and Emil Lupu

Abstract: Internet of Things environments enable us to capture more and more data about the physical environment we live in and about ourselves. The data enable us to optimise resources, personalise services and offer unprecedented insights into our lives. However, to achieve these insights data need to be shared (and sometimes sold) between organisations imposing rights and obligations upon the sharing parties and in accordance with multiple layers of sometimes conflicting legislation at international, national and organisational levels. In this work, we show how such rules can be captured in a formal representation called “Data Sharing Agreements”. We introduce the use of abductive reasoning and argumentation based techniques to detect inconsistencies in the rules  applicable and resolve them by assigning priorities to the rules. We show how through the use of argumentation based techniques use-cases taken from real life application are handled flexibly addressing trade-offs between confidentiality, privacy, availability and safety.