Policies

An argumentation reasoning approach for data processing

The paper “An argumentation reasoning approach for data processing” is now published in the Elsevier Journal Computers in Industry.

Title: An argumentation reasoning approach for data processing

Authors: Erisa Karafili, Konstantina Spanaki, Emil C. Lupu

Abstract: Data-intensive environments enable us to capture information and knowledge about the physical surroundings, to optimise our resources, enjoy personalised services and gain unprecedented insights into our lives. However, to obtain these endeavours extracted from the data, this data should be generated, collected and the insight should be exploited. Following an argumentation reasoning approach for data processing and building on the theoretical background of data management, we highlight the importance of data sharing agreements (DSAs) and quality attributes for the proposed data processing mechanism. The proposed approach is taking into account the DSAs and usage policies as well as the quality attributes of the data, which were previously neglected compared to existing methods in the data processing and management field. Previous research provided techniques towards this direction; however, a more intensive research approach for processing techniques should be introduced for the future to enhance the value creation from the data and new strategies should be formed around this data generated daily from various devices and sources.

This work was supported by FP7 EU-funded project Coco Cloud grant no.: 610853, and EPSRC Project CIPART grant no. EP/L022729/1.

The paper can be found in the following link as Open Access: http://www.sciencedirect.com/science/article/pii/S016636151730338X

Enabling Data Sharing in Contextual Environments: Policy Representation and Analysis

The paper “Enabling Data Sharing in Contextual Environments: Policy Representation and Analysis” was accepted at SACMAT 2017.

ACM Symposium on Access Control Models and Technologies (SACMAT 2017)

Authors: Erisa Karafili and Emil Lupu

Abstract: Internet of Things environments enable us to capture more and more data about the physical environment we live in and about ourselves. The data enable us to optimise resources, personalise services and offer unprecedented insights into our lives. However, to achieve these insights data need to be shared (and sometimes sold) between organisations imposing rights and obligations upon the sharing parties and in accordance with multiple layers of sometimes conflicting legislation at international, national and organisational levels. In this work, we show how such rules can be captured in a formal representation called “Data Sharing Agreements”. We introduce the use of abductive reasoning and argumentation based techniques to detect inconsistencies in the rulesĀ  applicable and resolve them by assigning priorities to the rules. We show how through the use of argumentation based techniques use-cases taken from real life application are handled flexibly addressing trade-offs between confidentiality, privacy, availability and safety.

Policy Refinement

Layered refinement with interleaved transformations
Layered refinement with interleaved transformations

Refining policies from high level goals to enforceable specifications in asemi-automated and principled ways remains one of the most significant challenges in policy based systems. We have on two occasions attempted to tackle this challenges in collaboration with Dr Alessandra Russo at Imperial, Dr Arosha Bandara at the Open University and Dr Jorge Lobo at IBM. The first attempt wast done during the Dr Bandara’s PhD thesis. …