Detecting Malicious Data Injections In Event Detection Wireless Sensor Networks
Wireless Sensor Networks (WSNs) are vulnerable and can be maliciously compromised, either physically or remotely, with potentially devastating effects. When sensor networks are used to detect the occurrence of events such as fires, intruders or heart-attacks, malicious data can be injected to create fake events and, thus, trigger an undesired response, or to mask the occurrence of actual events. We propose a novel algorithm to identify malicious data injections and build measurement estimates that are resistant to several compromised sensors even when they collude in the attack. We also propose a methodology to apply this algorithm in different application contexts and evaluate its results on three different datasets drawn from distinct WSN deployments. This leads us to identify different trade-offs in the design of such algorithms and how they are influenced by the application context.
Vittorio P. Illiano and Emil C. Lupu: Detecting Malicious Data Injections In Event Detection Wireless Sensor Networks. To appear in IEEE Transactions on Network and Service Management
IEEE publication link
Open access link