Increasing shape-bias in deep neural networks has been shown to improve robustness to common corruptions and noise. In this paper we analyze the adversarial robustness of texture and shape-biased models to Universal Adversarial Perturbations (UAPs). We use UAPs to evaluate the robustness of DNN models with varying degrees of shape-based training. We find that shape-biased models do not markedly improve adversarial robustness, and we show that ensembles of texture and shape-biased models can improve universal adversarial robustness while maintaining strong performance.
Citation: K. T. Co, L. Muñoz-González, L. Kanthan, B. Glocker and E. C. Lupu, “Universal Adversarial Robustness of Texture and Shape-Biased Models,” 2021 IEEE International Conference on Image Processing (ICIP), 2021, pp. 799-803, doi: 10.1109/ICIP42928.2021.9506325.