Presentations

Robustness and Transferability of Universal Attacks on Compressed Models

A.G. Matachana, K.T. Co, L. Muñoz-González, D. Martinez, E.C. Lupu. Robustness and Transferability of Universal Attacks on Compressed Models. AAAI 2021 Workshop: Towards Robust, Secure and Efficient Machine Learning. 2021.

Neural network compression methods like pruning and quantization are very effective at efficiently deploying Deep Neural Networks (DNNs) on edge devices. However, DNNs remain vulnerable to adversarial examples-inconspicuous inputs that are specifically designed to fool these models. In particular, Universal Adversarial Perturbations (UAPs), are a powerful class of adversarial attacks which create adversarial perturbations that can generalize across a large set of inputs. In this work, we analyze the effect of various compression techniques to UAP attacks, including different forms of pruning and quantization. We test the robustness of compressed models to white-box and transfer attacks, comparing them with their uncompressed counterparts on CIFAR-10 and SVHN datasets. Our evaluations reveal clear differences between pruning methods, including Soft Filter and Post-training Pruning. We observe that UAP transfer attacks between pruned and full models are limited, suggesting that the systemic vulnerabilities across these models are different. This finding has practical implications as using different compression techniques can blunt the effectiveness of black-box transfer attacks. We show that, in some scenarios, quantization can produce gradient-masking, giving a false sense of security. Finally, our results suggest that conclusions about the robustness of compressed models to UAP attacks is application dependent, observing different phenomena in the two datasets used in our experiments.

Hazard Driven Threat Modelling for Cyber Physical Systems

Luca Maria Castiglione and Emil C. Lupu. 2020. Hazard Driven Threat Modelling for Cyber Physical Systems. In Proceedings of the 2020 Joint Workshop on CPS&IoT Security and Privacy(CPSIOTSEC’20). Association for Computing Machinery, New York, NY, USA, 13–24.

Adversarial actors have shown their ability to infiltrate enterprise networks deployed around Cyber Physical Systems (CPSs) through social engineering, credential stealing and file-less infections. When inside, they can gain enough privileges to maliciously call legitimate APIs and apply unsafe control actions to degrade the system performance and undermine its safety. Our work lies at the intersection of security and safety, and aims to understand dependencies among security, reliability and safety in CPS/IoT. We present a methodology to perform hazard driven threat modelling and impact assessment in the context of CPSs. The process starts from the analysis of behavioural, functional and architectural models of the CPS. We then apply System Theoretic Process Analysis (STPA) on the functional model to highlight high-level abuse cases. We leverage a mapping between the architectural and the system theoretic(ST) models to enumerate those components whose impairment provides the attacker with enough privileges to tamper with or disrupt the data-flows. This enables us to find a causal connection between the attack surface (in the architectural model) and system level losses. We then link the behavioural and system theoretic representations of the CPS to quantify the impact of the attack. Using our methodology it is possible to compute a comprehensive attack graph of the known attack paths and to perform both a qualitative and quantitative impact assessment of the exploitation of vulnerabilities affecting target nodes. The framework and methodology are illustrated using a small scale example featuring a Communication Based Train Control (CBTC) system. Aspects regarding the scalability of our methodology and its application in real world scenarios are also considered. Finally, we discuss the possibility of using the results obtained to engineer both design time and real time defensive mechanisms.

Tracking the Bad Guys: An Efficient Forensic Methodology To Trace Multi-step Attacks Using Core Attack Graphs

Martín Barrère, Rodrigo Vieira Steiner, Rabih Mohsen, Emil C. Lupu, Tracking the Bad Guys: An Efficient Forensic Methodology To Trace Multi-step Attacks Using Core Attack Graphs, 13th IEEE/IFIP International Conference on Network and Service Management (CNSM’17), November 2017, in Tokyo, Japan.

In this paper, we describe an efficient methodology to guide investigators during network forensic analysis. To this end, we introduce the concept of core attack graph, a compact representation of the main routes an attacker can take towards specific network targets. Such compactness allows forensic investigators to focus their efforts on critical nodes that are more likely to be part of attack paths, thus reducing the overall number of nodes (devices, network privileges) that need to be examined. Nevertheless, core graphs also allow investigators to hierarchically explore the graph in order to retrieve different levels of summarised information. We have evaluated our approach over different network topologies varying parameters such as network size, density, and forensic evaluation threshold. Our results demonstrate that we can achieve the same level of accuracy provided by standard logical attack graphs while significantly reducing the exploration rate of the network.

Naggen: a Network Attack Graph GENeration Tool

Martin Barrere and Emil C. Lupu, Naggen: a Network Attack Graph GENeration Tool, IEEE Conference on Communications and Network Security (CNS’17), October 2017, in Las Vegas, USA.

Attack graphs constitute a powerful security tool aimed at modelling the many ways in which an attacker may compromise different assets in a network. Despite their usefulness in several security-related activities (e.g. hardening, monitoring, forensics), the complexity of these graphs can massively grow as the network becomes denser and larger, thus defying their practical usability. In this presentation, we first describe some of the problems that currently challenge the practical use of attack graphs. We then explain our approach based on core attack graphs, a novel perspective to address attack graph complexity. Finally, we present Naggen, a tool for generating, visualising and exploring core attack graphs. We use Naggen to show the advantages of our approach on different security applications.

Argumentation-based Security for Social Good

The paper “Argumentation-based Security for Social Good” presented at the AAAI Spring Symposia 2017 is now available at the AAAI Technical Report.

Title: Argumentation-Based Security for Social Good

Authors: Erisa Karafili, Antonis C. Kakas, Nikolaos I. Spanoudakis, Emil C. Lupu

Abstract: The increase of connectivity and the impact it has in ever day life is raising new and existing security problems that are becoming important for social good. We introduce two particular problems: cyber attack attribution and regulatory data sharing. For both problems, decisions about which rules to apply, should be taken under incomplete and context dependent information. The solution we propose is based on argumentation reasoning, that is a well suited technique for implementing decision making mechanisms under conflicting and incomplete information. Our proposal permits us to identify the attacker of a cyber attack and decide the regulation rule that should be used while using and sharing data. We illustrate our solution through concrete examples.

The paper can be found in the following link: https://aaai.org/ocs/index.php/FSS/FSS17/paper/view/15928/15306

A video of the presentation can be found in the workshop page AI for Social Good and also in following link: https://youtu.be/wYg8jaHPbyw?t=33m33s