Improving Data Sharing in Data Rich Environments
The paper “Improving Data Sharing in Data Rich Environments” was accepted at the IEEE Big Data International Workshop on Policy-based Autonomic Data Governance (PADG), part of the 15th IEEE International Conference on Big Data (Big Data 2017), December 11-14, 2017, Boston, MA, USA. This work was done in collaboration with our partners (BAE Systems, IBM UK and IBM US) from the DAIS International Technology Alliance (ITA). The paper can be found here.
Authors: Erisa Karafili, Emil C. Lupu, Alan Cullen, Bill Williams, Saritha Arunkumar, Seraphin Calo
Abstract: The increasing use of big data comes along with the problem of ensuring correct and secure data access. There is a need to maximise the data dissemination whilst controlling their access. Depending on the type of users different qualities and parts of data are shared. We introduce an alteration mechanism, more precisely a restriction one, based on a policy analysis language. The alteration reflects the level of trust and relations the users have, and are represented as policies inside the data sharing agreements. These agreements are attached to the data and are enforced every time the data are accessed, used or shared. We show the use of our alteration mechanism with a military use case, where different parties are involved during the missions, and they have different relations of trust and partnership.
The work was supported by EPSRC Project CIPART grant no. EP/L022729/1 and DAIS ITA (Sponsored by U.S. Army Research Laboratory and the U.K. Ministry of Defence under Agreement Number W911NF-16-3-0001).