Category Archives: Uncategorized

Unity is strength!: combining attestation and measurements inspection to handle malicious data injections in WSNs

Attestation and measurements inspection are different but complementary approaches towards the same goal: ascertaining the integrity of sensor nodes in wireless sensor networks. In this paper we compare the benefits and drawbacks of both techniques and seek to determine how to best combine them. However, our study shows that no single solution exists, as each choice introduces changes in the measurements collection process, affects the attestation protocol, and gives a different balance between the high detection rate of attestation and the low power overhead of measurements inspection. Therefore, we propose three strategies that combine measurements inspection and attestation in different ways, and a way to choose between them based on the requirements of different applications. We analyse their performance both analytically and in a simulator. The results show that the combined strategies can achieve a detection rate close to attestation, in the range 96–99%, whilst keeping a power overhead close to measurements inspection, in the range 1–10%.

 

Vittorio P. Illiano, Rodrigo V. Steiner and Emil C. Lupu: Unity is strength!: combining attestation and measurements inspection to handle malicious data injections in WSNs.

ACM WiSec ’17 link (open access)

Direct Download

Compositional Reliability Analysis for Probabilistic Component Automata

In this paper we propose a modelling formalism, Probabilistic Component Automata (PCA), as a probabilistic extension to Interface Automata to represent the probabilistic behaviour of component-based systems. The aim is to support composition of component-based models for both behaviour and non-functional properties such as reliability. We show how addi- tional primitives for modelling failure scenarios, failure handling and failure propagation, as well as other algebraic operators, can be combined with models of the system architecture to automatically construct a system model by composing models of its subcomponents. The approach is supported by the tool LTSA-PCA, an extension of LTSA, which generates a composite DTMC model. The reliability of a particular system configuration can then be automatically analysed based on the corresponding composite model using the PRISM model checker. This approach facilitates configurability and adaptation in which the software configuration of components and the associated composition of component models are changed at run time.

P. Rodrigues, E. Lupu and J. Kramer,  Compositional Reliability Analysis for Probabilistic Component Automata, to appear in International Workshop on Modelling in Software Engineering (MiSE), Florence, May 16-17, 2015.