RISS

Resilient Information Systems Security

Bayesian Attack Graphs for Security Risk Assessment

Attack graphs offer a powerful framework for security risk assessment. They provide a compact representation of the attack paths that an attacker can follow to compromise network resources from the analysis of the network topology and vulnerabilities. The uncertainty about the attacker’s behaviour makes Bayesian networks suitable to model attack graphs to perform static and dynamic security risk assessment. Thus, whilst static analysis of attack graphs considers the security posture at rest, dynamic analysis accounts for evidence of compromise at run-time, helping system administrators to react against potential threats. In this paper, we introduce a Bayesian attack graph model that […]

Efficient Attack Graph Analysis through Approximate Inference

components given their vulnerabilities and interconnections and accounts for multi-step attacks spreading through the system. While static analysis considers the risk posture at rest, dynamic analysis also accounts for evidence of compromise, for example, from Security Information and Event Management software or forensic investigation. However, in this context, exact Bayesian inference techniques do not scale well. In this article, we show how Loopy Belief Propagation—an approximate inference technique—can be applied to attack graphs and that it scales linearly in the number of nodes for both static and dynamic analysis, making such analyses viable for larger networks. We experiment with different […]

Exact Inference Techniques for the Analysis of Bayesian Attack Graphs

Attack graphs are a powerful tool for security risk assessment by analysing network vulnerabilities and the paths attackers can use to compromise network resources. The uncertainty about the attacker’s behaviour makes Bayesian networks suitable to model attack graphs to perform static and dynamic analysis. Previous approaches have focused on the formalization of attack graphs into a Bayesian model rather than proposing mechanisms for their analysis. In this paper we propose to use efficient algorithms to make exact inference in Bayesian attack graphs, enabling the static and dynamic network risk assessments. To support the validity of our approach we have performed […]

SECRIS: Security Risk Assessment of IoT Environments with Attack Graph Models

IoT environments are vulnerable: many devices can be accessed physically and are not designed with security in mind. It is often impractical to patch all the vulnerabilities or to eliminate all possible threats. Unlike more traditional computing systems IoT environments bring together the physical, human and cyber aspects of a system. Each can be used to compromise the other and each can contribute towards monitoring and protecting the other. Given the complexity of possible attacks, techniques for identifying and assessing the security risk are needed. In traditional networked environments attack graphs have been proven as a powerful tool for representing […]

Exact Inference Techniques for the Dynamic Analysis of Attack Graphs

Attack graphs are a powerful tool for security risk assessment by analysing network vulnerabilities and the paths attackers can use to compromise valuable network resources. The uncertainty about the attacker’s behaviour and capabilities make Bayesian networks suitable to model attack graphs to perform static and dynamic analysis. Previous approaches have focused on the formalization of traditional attack graphs into a Bayesian model rather than proposing mechanisms for their analysis. In this paper we propose to use efficient algorithms to make exact inference in Bayesian attack graphs, enabling the static and dynamic network risk assessments. To support the validity of our […]

CIPART: Cloud Intelligent Protection at Run-Time

Organisations, small and large, increasingly rely upon cloud environments to supply their ICT needs because clouds provide a better incremental cost structure, resource elasticity and simpler management. This trend is set to continue as increasingly information collected from mobile devices and smart environments including homes, infrastructures and smart-cities is uploaded and processed in cloud environments. Services delivered to users are also deployed in the cloud as this provides better scaleability and in some cases permits migration closer to the point of access for reduced latency. Clouds are therefore an attractive target for organised and skilled cyber-attacks. They are also more […]