Determining Resilience Gains From Anomaly Detection for Event Integrity in Wireless Sensor Networks

Vittorio P. Illiano, Andrea Paudice, Luis Muñoz-González, and Emil C. Lupu. 2018. Determining Resilience Gains From Anomaly Detection for Event Integrity in Wireless Sensor Networks. ACM Trans. Sen. Netw. 14, 1, Article 5 (February 2018), 35 pages. DOI: https://doi.org/10.1145/3176621

Abstract: Measurements collected in a wireless sensor network (WSN) can be maliciously compromised through several attacks, but anomaly detection algorithms may provide resilience by detecting inconsistencies in the data. Anomaly detection can identify severe threats to WSN applications, provided that there is a sufficient amount of genuine information. This article presents a novel method to calculate an assurance measure for the network by estimating the maximum number of malicious measurements that can be tolerated. In previous work, the resilience of anomaly detection to malicious measurements has been tested only against arbitrary attacks, which are not necessarily sophisticated. The novel method presented here is based on an optimization algorithm, which maximizes the attack’s chance of staying undetected while causing damage to the application, thus seeking the worst-case scenario for the anomaly detection algorithm. The algorithm is tested on a wildfire monitoring WSN to estimate the benefits of anomaly detection on the system’s resilience. The algorithm also returns the measurements that the attacker needs to synthesize, which are studied to highlight the weak spots of anomaly detection. Finally, this article presents a novel methodology that takes in input the degree of resilience required and automatically designs the deployment that satisfies such a requirement.

AF-Cyber: Logic-based Attribution and Forensics in Cyber Security

Connected devices will continue to grow in volume and variety. The increase of connectivity brings a drastic impact on the increase of cyber attacks. Protecting measurements are not enough, while finding who did the attack is a crucial for preventing the escalation of cyber attacks. The impact of forensics in cyber security is becoming essential for the reduction and mitigation of attacks. Forensics and attribution forensics come along with their own challenges, like the difficulties on collecting suitable evidence, and the vastness of anti-forensics tools used by the attackers to cover their traces.

The main goal of AF-Cyber is to investigate and analyse the problem of attributing cyber attacks. We plan to construct a logic-based framework for performing attribution of cyber attacks, based on cyber forensics evidence, social science approaches and an intelligent methodology for dynamic evidence collection. AF-Cyber will relieve part of the cyberattacks problem, by supporting forensics investigation and attribution with logical-based frameworks representation, reasoning and supporting tools. AF-Cyber is multi-disciplinary and collaborative, bridging forensics in cyber attacks, theoretical computer science (logics and formal proofs), security, software engineering, and social science.

AF-Cyber received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 746667.

 

 

AF-Cyber: Logic-based Attribution and Forensics in Cyber Security

Dr Karafili is officially a Marie Curie Fellow at the Department of Computing, Imperial College. She will work on the project “AF-Cyber: Logic-based Attribution and Forensics in Cyber Security“.  The project was granted by the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie grant agreement No 746667.

 

AF-Cyber: Logic-based Attribution and Forensics in Cyber Security

The main goal of AF-Cyber is to investigate and analyse the problem of attributing cyber attacks. We plan to construct a logic-based framework for performing attribution of cyber attacks, based on cyber forensics evidence, social science approaches and an intelligent methodology for dynamic evidence collection. AF-Cyber will relieve part of the cyberattacks problem, by supporting forensics investigation and attribution with logical-based frameworks representation, reasoning and supporting tools. AF-Cyber is multi-disciplinary and collaborative, bridging forensics in cyber attacks, theoretical computer science (logics and formal proofs), security, software engineering, and social science.

Improving Data Sharing in Data Rich Environments

The paper “Improving Data Sharing in Data Rich Environments” was accepted at the IEEE Big Data International Workshop on Policy-based Autonomic Data Governance (PADG), part of the 15th IEEE International Conference on Big Data (Big Data 2017), December 11-14, 2017, Boston, MA, USA. This work was done in collaboration with our partners (BAE Systems, IBM UK and IBM US) from the DAIS International Technology Alliance (ITA). The paper can be found here.

Authors: Erisa Karafili, Emil C. Lupu, Alan Cullen, Bill Williams, Saritha Arunkumar, Seraphin Calo

Abstract: The increasing use of big data comes along with the problem of ensuring correct and secure data access. There is a need to maximise the data dissemination whilst controlling their access. Depending on the type of users different qualities and parts of data are shared. We introduce an alteration mechanism, more precisely a restriction one, based on a policy analysis language. The alteration reflects the level of trust and relations the users have, and are represented as policies inside the data sharing agreements. These agreements are attached to the data and are enforced every time the data are accessed, used or shared. We show the use of our alteration mechanism with a military use case, where different parties are involved during the missions, and they have different relations of trust and partnership.

The work was supported by EPSRC Project CIPART grant no. EP/L022729/1 and DAIS ITA (Sponsored by U.S. Army Research Laboratory and the U.K. Ministry of Defence under Agreement Number W911NF-16-3-0001).

 

Tracking the Bad Guys: An Efficient Forensic Methodology To Trace Multi-step Attacks Using Core Attack Graphs

Tracking the Bad Guys: An Efficient Forensic Methodology To Trace Multi-step Attacks Using Core Attack Graphs, has been presented at the 13th IEEE/IFIP International Conference on Network and Service Management (CNSM’17), November 2017, in Tokyo, Japan.

 

The paper is available here and the presentation slides (PDF) can be downloaded here.

Authors: Martín Barrère, Rodrigo Vieira Steiner, Rabih Mohsen, Emil C. Lupu

In this paper, we describe an efficient methodology to guide investigators during network forensic analysis. To this end, we introduce the concept of core attack graph, a compact representation of the main routes an attacker can take towards specific network targets. Such compactness allows forensic investigators to focus their efforts on critical nodes that are more likely to be part of attack paths, thus reducing the overall number of nodes (devices, network privileges) that need to be examined. Nevertheless, core graphs also allow investigators to hierarchically explore the graph in order to retrieve different levels of summarised information. We have evaluated our approach over different network topologies varying parameters such as network size, density, and forensic evaluation threshold. Our results demonstrate that we can achieve the same level of accuracy provided by standard logical attack graphs while significantly reducing the exploration rate of the network.

Naggen: a Network Attack Graph GENeration Tool

Naggen: a Network Attack Graph GENeration Tool, has been presented at the IEEE Conference on Communications and Network Security (CNS’17), October 2017, in Las Vegas, USA.

The paper is available here and the poster can be downloaded here.

Authors: Martín Barrère, Emil C. Lupu

Attack graphs constitute a powerful security tool aimed at modelling the many ways in which an attacker may compromise different assets in a network. Despite their usefulness in several security-related activities (e.g. hardening, monitoring, forensics), the complexity of these graphs can massively grow as the network becomes denser and larger, thus defying their practical usability. In this presentation, we first describe some of the problems that currently challenge the practical use of attack graphs. We then explain our approach based on core attack graphs, a novel perspective to address attack graph complexity. Finally, we present Naggen, a tool for generating, visualising and exploring core attack graphs. We use Naggen to show the advantages of our approach on different security applications.

About Naggen:

Bayesian Attack Graphs for Security Risk Assessment

Attack graphs offer a powerful framework for security risk assessment. They provide a compact representation of the attack paths that an attacker can follow to compromise network resources from the analysis of the network topology and vulnerabilities. The uncertainty about the attacker’s behaviour makes Bayesian networks suitable to model attack graphs to perform static and dynamic security risk assessment. Thus, whilst static analysis of attack graphs considers the security posture at rest, dynamic analysis accounts for evidence of compromise at run-time, helping system administrators to react against potential threats. In this paper, we introduce a Bayesian attack graph model that allows to estimate the probabilities of an attacker compromising different resources of the network. We show how exact and approximate inference techniques can be efficiently applied on Bayesian attack graph models with thousands of nodes.

Luis Muñoz-González, Emil C. Lupu, “Bayesian Attack Graphs for Security Risk Assessment.” IST-153 NATO Workshop on Cyber Resilience, 2017.

Argumentation-based Security for Social Good

The paper “Argumentation-based Security for Social Good” presented at the AAAI Spring Symposia 2017 is now available at the AAAI Technical Report.

Title: Argumentation-Based Security for Social Good

Authors: Erisa Karafili, Antonis C. Kakas, Nikolaos I. Spanoudakis, Emil C. Lupu

Abstract: The increase of connectivity and the impact it has in ever day life is raising new and existing security problems that are becoming important for social good. We introduce two particular problems: cyber attack attribution and regulatory data sharing. For both problems, decisions about which rules to apply, should be taken under incomplete and context dependent information. The solution we propose is based on argumentation reasoning, that is a well suited technique for implementing decision making mechanisms under conflicting and incomplete information. Our proposal permits us to identify the attacker of a cyber attack and decide the regulation rule that should be used while using and sharing data. We illustrate our solution through concrete examples.

The paper can be found in the following link: https://aaai.org/ocs/index.php/FSS/FSS17/paper/view/15928/15306

A video of the presentation can be found in the workshop page AI for Social Good and also in following link: https://youtu.be/wYg8jaHPbyw?t=33m33s

An argumentation reasoning approach for data processing

The paper “An argumentation reasoning approach for data processing” is now published in the Elsevier Journal Computers in Industry.

Title: An argumentation reasoning approach for data processing

Authors: Erisa Karafili, Konstantina Spanaki, Emil C. Lupu

Abstract: Data-intensive environments enable us to capture information and knowledge about the physical surroundings, to optimise our resources, enjoy personalised services and gain unprecedented insights into our lives. However, to obtain these endeavours extracted from the data, this data should be generated, collected and the insight should be exploited. Following an argumentation reasoning approach for data processing and building on the theoretical background of data management, we highlight the importance of data sharing agreements (DSAs) and quality attributes for the proposed data processing mechanism. The proposed approach is taking into account the DSAs and usage policies as well as the quality attributes of the data, which were previously neglected compared to existing methods in the data processing and management field. Previous research provided techniques towards this direction; however, a more intensive research approach for processing techniques should be introduced for the future to enhance the value creation from the data and new strategies should be formed around this data generated daily from various devices and sources.

This work was supported by FP7 EU-funded project Coco Cloud grant no.: 610853, and EPSRC Project CIPART grant no. EP/L022729/1.

The paper can be found in the following link as Open Access: http://www.sciencedirect.com/science/article/pii/S016636151730338X