Tag Archives: machine learning

Bayesian Attack Graphs for Security Risk Assessment

Attack graphs offer a powerful framework for security risk assessment. They provide a compact representation of the attack paths that an attacker can follow to compromise network resources from the analysis of the network topology and vulnerabilities. The uncertainty about the attacker’s behaviour makes Bayesian networks suitable to model attack graphs to perform static and dynamic security risk assessment. Thus, whilst static analysis of attack graphs considers the security posture at rest, dynamic analysis accounts for evidence of compromise at run-time, helping system administrators to react against potential threats. In this paper, we introduce a Bayesian attack graph model that allows to estimate the probabilities of an attacker compromising different resources of the network. We show how exact and approximate inference techniques can be efficiently applied on Bayesian attack graph models with thousands of nodes.

Luis Muñoz-González, Emil C. Lupu, “Bayesian Attack Graphs for Security Risk Assessment.” IST-153 NATO Workshop on Cyber Resilience, 2017.

Towards Poisoning Deep Learning Algorithms with Back-gradient Optimization

A number of online services nowadays rely upon machine learning to extract valuable information from data collected in the wild. This exposes learning algorithms to the threat of data poisoning, i.e., a coordinate attack in which a fraction of the training data is controlled by the attacker and manipulated to subvert the learning process. To date, these attacks have been devised only against a limited class of binary learning algorithms, due to the inherent complexity of the gradient-based procedure used to optimize the poisoning points (a.k.a. adversarial training examples).
In this work, we first extend the definition of poisoning attacks to multi-class problems. We then propose a novel poisoning algorithm based on the idea of back-gradient optimization, i.e., to compute the gradient of interest through automatic differentiation, while also reversing the learning procedure to drastically reduce the attack complexity. Compared to current poisoning strategies, our approach is able to target a wider class of learning algorithms, trained with gradient-based procedures, including neural networks and deep learning architectures. We empirically evaluate its effectiveness on several application examples, including spam filtering, malware detection, and handwritten digit recognition. We finally show that, similarly to adversarial test examples, adversarial training examples can also be transferred across different learning algorithms.

Luis Muñoz-González, Battista Biggio, Ambra Demontis, Andrea Paudice, Vasin Wongrassamee, Emil C. Lupu, Fabio Roli. “Towards Poisoning Deep Learning Algorithms with Back-gradient Optimization.” Workshop on Artificial Intelligence and Security (AISec), 2017.

This work has been done in collaboration with the PRA Lab in the University of Cagliari, Italy.

Efficient Attack Graph Analysis through Approximate Inference

Attack graphs provide compact representations of the attack paths an attacker can follow to compromise network resources from the analysis of network vulnerabilities and topology. These representations are a powerful tool for security risk assessment. Bayesian inference on attack graphs enables the estimation of the risk of compromise to the system’s 
components given their vulnerabilities and interconnections and accounts for multi-step attacks spreading through the system. While static analysis considers the risk posture at rest, dynamic analysis also accounts for evidence of compromise, for example, from Security Information and Event Management software or forensic investigation. However, in this context, exact Bayesian inference techniques do not scale well. In this article, we show how Loopy Belief Propagation—an approximate inference technique—can be applied to attack graphs and that it scales linearly in the number of nodes for both static and dynamic analysis, making such analyses viable for larger networks. We experiment with different topologies and network clustering on synthetic Bayesian attack graphs with thousands of nodes to show that the algorithm’s accuracy is acceptable and that it converges to a stable solution. We compare sequential and parallel versions of Loopy Belief Propagation with exact inference techniques for both static and dynamic analysis, showing the advantages and gains of approximate inference techniques when scaling to larger attack graphs.

Luis Muñoz-González, Daniele Sgandurra, Andrea Paudice, Emil C. Lupu. “Efficient Attack Graph Analysis through Approximate Inference.” ACM Transactions on Privacy and Security, vol. 20(3), pp. 1-30, 2017.

Exact Inference Techniques for the Analysis of Bayesian Attack Graphs

Attack graphs are a powerful tool for security risk assessment by analysing network vulnerabilities and the paths attackers can use to compromise network resources. The uncertainty about the attacker’s behaviour makes Bayesian networks suitable to model attack graphs to perform static and dynamic analysis. Previous approaches have focused on the formalization of attack graphs into a Bayesian model rather than proposing mechanisms for their analysis. In this paper we propose to use efficient algorithms to make exact inference in Bayesian attack graphs, enabling the static and dynamic network risk assessments. To support the validity of our approach we have performed an extensive experimental evaluation on synthetic Bayesian attack graphs with different topologies, showing the computational advantages in terms of time and memory use of the proposed techniques when compared to existing approaches.

Luis Muñoz-González, Daniele Sgandurra, Martín Barrere, and Emil C. Lupu. “Exact Inference Techniques for the Analysis of Bayesian Attack Graphs.” IEEE Transactions on Dependable and Secure Computing (in press), 2017.

Automated Dynamic Analysis of Ransomware: Benefits, Limitations and use for Detection

Recent statistics show that in 2015 more than 140 millions new malware samples have been found. Among these, a large portion is due to ransomware, the class of malware whose specific goal is to render the victim’s system unusable, in particular by encrypting important files, and then ask the user to pay a ransom to revert the damage. Several ransomware include sophisticated packing techniques, and are hence difficult to statically analyse. We present EldeRan, a machine learning approach for dynamically analysing and classifying ransomware. EldeRan monitors a set of actions performed by applications in their first phases of installation checking for characteristics signs of ransomware. Our tests over a dataset of 582 ransomware belonging to 11 families, and with 942 goodware applications, show that EldeRan achieves an area under the ROC curve of 0.995. Furthermore, EldeRan works without requiring that an entire ransomware family is available beforehand. These results suggest that dynamic analysis can support ransomware detection, since ransomware samples exhibit a set of characteristic features at run-time that are common across families, and that helps the early detection of new variants. We also outline some limitations of dynamic analysis for ransomware and propose possible solutions.

Daniele Sgandurra, Luis Muñoz-González, Rabih Mohsen, Emil C. Lupu. In ArXiv e-prints, arXiv:1609.03020, September 2016.