Attestation and measurements inspection are different but complementary approaches towards the same goal: ascertaining the integrity of sensor nodes in wireless sensor networks. In this paper we compare the benefits and drawbacks of both techniques and seek to determine how to best combine them. However, our study shows that no single solution exists, as each choice introduces changes in the measurements collection process, affects the attestation protocol, and gives a different balance between the high detection rate of attestation and the low power overhead of measurements inspection. Therefore, we propose three strategies that combine measurements inspection and attestation in different ways, and a way to choose between them based on the requirements of different applications. We analyse their performance both analytically and in a simulator. The results show that the combined strategies can achieve a detection rate close to attestation, in the range 96–99%, whilst keeping a power overhead close to measurements inspection, in the range 1–10%.
Vittorio P. Illiano, Rodrigo V. Steiner and Emil C. Lupu: Unity is strength!: combining attestation and measurements inspection to handle malicious data injections in WSNs.
Dr. Hassan Chizari has joined the RISS Group in February 2017, coming from Universiti Teknologi Malaysia (UTM). Hassan is a Post Doctorate Research Associate (PDRA) in Imperial College London. He did his bachelor and master degree in Shiraz University (IRAN) on ‘Computer Hardware’ and ‘Artificial Intelligence and Robotics’ respectively. He was a PhD candidate in UTM studying on Wireless Sensor Networks and he was awarded the PhD on Computer Networks. He worked in Imam Khomeini International University (IKIU) and Universiti Teknologi Malaysia (UTM) as a Lecturer and a Senior Lecturer for about 9 years. His main research interest is Wireless Sensor Network both in hardware and software perspectives and mainly in cyber-security area. Hassan has worked in the group in particular on using biophysical signals as a randomness source for establishing shared keys in wearable body sensor networks for health care. He is now an Associate Professor in Cyber-Security at the University of Gloucestershire. Google Scholar Profile, Research Gate Profile, ORCiD Profile, Home page
Abstract: Internet of Things environments enable us to capture more and more data about the physical environment we live in and about ourselves. The data enable us to optimise resources, personalise services and offer unprecedented insights into our lives. However, to achieve these insights data need to be shared (and sometimes sold) between organisations imposing rights and obligations upon the sharing parties and in accordance with multiple layers of sometimes conflicting legislation at international, national and organisational levels. In this work, we show how such rules can be captured in a formal representation called “Data Sharing Agreements”. We introduce the use of abductive reasoning and argumentation based techniques to detect inconsistencies in the rules applicable and resolve them by assigning priorities to the rules. We show how through the use of argumentation based techniques use-cases taken from real life application are handled flexibly addressing trade-offs between confidentiality, privacy, availability and safety.
Wireless Sensor Networks (WSNs) have become popular for monitoring critical infrastructures, military applications, and Internet of Things (IoT) applications.
However, WSNs carry several vulnerabilities in the sensor nodes, the wireless medium, and the environment. In particular, the nodes are vulnerable to tampering on the field, since they are often unattended, physically accessible, and use of tamper-resistant hardware is often too expensive.
Malicious data injections consist of manipulations of the measurements-related data, which threaten the WSN’s mission since they enable an attacker to solicit a wrong system’s response, such as concealing the presence of problems, or raising false alarms.
Measurements inspection is a method for counteracting malicious measurements by exploiting internal correlations in the measurements themselves. Since it does not need extra data it is a lightweight approach, and since it makes no assumption on the attack vector it is caters for several attacks at once.
Our first achievement was to identify the benefits and shortcomings of the current measurements inspection techniques and produce a literature survey, which was published in ACM Computing Surveys: V. P. Illiano and E. C. Lupu. ”Detecting malicious data injections in wireless sensor networks: A survey”, Oct. 2015 . The survey has revealed a large number of algorithms proposed for measurements inspection in sensor measurements. However, malicious data injections are usually tackled together with faulty measurements. Nevertheless, malicious measurements are, by and large, more difficult to detect than faulty measurements, especially when multiple malicious sensors collude and produce measurements that are consistent with each other.
We have designed an initial algorithm, which detects effectively malicious data injections in the presence of sophisticated collusion strategies among a subset of sensor nodes when a single event of interest (e.g. fire, earthquake, power outage) occurs at a time. The detection algorithm selects only information that appears reliable. Colluding sensors are not allowed to compensate for each other in the detection metric whilst still injecting malicious data thanks to an aggregation operator that is accurate in the presence of genuine measurements as well as resistant to malicious data. This work was published in IEEE Transactions on Network and Service Management, V. Illiano and E. Lupu, Detecting malicious data injections in event detection wireless sensor networks, Sept 2015
Whilst detection proved highly reliable also in the presence of several colluding nodes, we have witnessed that more genuine nodes are needed to make a correct characterisation of malicious nodes. Hence, we have studied techniques to increase the reliability in identifying malicious nodes through occasional recourse to Software Attestation, a technique that is particularly reliable in detecting compromised software, but is also expensive for the limited computation and energy resources of the sensor nodes. Based on a thorough analysis of the aspects that make measurements inspection and software attestation complementary, we have designed the methods that allow to achieve a reliability as high as for attestation with an overhead as low as for measurements inspection. This work was presented at the 10th ACM Conference on Security and Privacy in Wireless and Mobile Networks (WiSec 2017).
We are proud to be part of the US-UK DAIS ITA working in particular at the policy-based techniques of the future, revising and re-thinking the intersection between policy-based control and autonomy.
Wireless Sensor Networks carry a high risk of being compromised, as their deployments are often unattended, physically accessible and the wireless medium is difficult to secure. Malicious data injections take place when the sensed measurements are maliciously altered to trigger wrong and potentially dangerous responses. When many sensors are compromised, they can collude with each other to alter the measurements making such changes difficult to detect. Distinguishing between genuine and malicious measurements is even more difficult when significant variations may be introduced because of events, especially if more events occur simultaneously. We propose a novel methodology based on wavelet transform to detect malicious data injections, to characterise the responsible sensors, and to distinguish malicious interference from faulty behaviours. The results, both with simulated and real measurements, show that our approach is able to counteract sophisticated attacks, achieving a significant improvement over state-of-the-art approaches.
Vittorio P. Illiano, Luis Muñoz-González and Emil C. Lupu: Don’ t fool me!: Detection, Characterisation and Diagnosis of Spoofed and Masked Events in Wireless Sensor Networks.
Attestation is a mechanism used by a trusted entity to validate the software integrity of an untrusted platform. Over the past few years, several attestation techniques have been proposed. While they all use variants of a challenge-response protocol, they make different assumptions about what an attacker can and cannot do. …
RISS Group participated at the London Duathlon this Sunday (18/09/16) at the Duathlon Relay. Erisa Karafili ran 10km, Daniele Sgandurra cycled 44km, and Rodrigo Vieira Steiner ran 5km.
Recent statistics show that in 2015 more than 140 millions new malware samples have been found. Among these, a large portion is due to ransomware, the class of malware whose specific goal is to render the victim’s system unusable, in particular by encrypting important files, and then ask the user to pay a ransom to revert the damage. Several ransomware include sophisticated packing techniques, and are hence difficult to statically analyse. We present EldeRan, a machine learning approach for dynamically analysing and classifying ransomware. EldeRan monitors a set of actions performed by applications in their first phases of installation checking for characteristics signs of ransomware. Our tests over a dataset of 582 ransomware belonging to 11 families, and with 942 goodware applications, show that EldeRan achieves an area under the ROC curve of 0.995. Furthermore, EldeRan works without requiring that an entire ransomware family is available beforehand. These results suggest that dynamic analysis can support ransomware detection, since ransomware samples exhibit a set of characteristic features at run-time that are common across families, and that helps the early detection of new variants. We also outline some limitations of dynamic analysis for ransomware and propose possible solutions.
Daniele Sgandurra, Luis Muñoz-González, Rabih Mohsen, Emil C. Lupu. In ArXiv e-prints, arXiv:1609.03020, September 2016.
30th Annual IFIP WG 11.3 Working Conference on Data and Applications Security and Privacy (DBSec 2016)!
Authors: Daniele Sgandurra, Erisa Karafili and Emil Lupu.
Abstract: We propose a framework, called FATHoM (FormAlizing THreat Models), to define threat models for virtualized systems. For each component of a virtualized system, we specify a set of security proper- ties that defines its control responsibility, its vulnerability and protection states. Relations are used to represent how assumptions made about a component’s security state restrict the assumptions that can be made on the other components. FATHoM includes a set of rules to compute the derived security states from the assumptions and the components’ relations. A further set of relations and rules is used to define how to protect the derived vulnerable components. The resulting system is then analysed, among others, for consistency of the threat model. We have developed a tool that implements FATHoM, and have validated it with use-cases adapted from the literature.
We are thrilled to be part of the PETRAS IoT Hub which aims to ensure that the UK remains a global leader in the Internet of Things. PETRAS (Privacy, Ethics, Trust, Reliability, Acceptability and Security) groups together 9 leading UK universities and has more than 47 user partners from industry and the public sector. The consortium has received a £9.8M grant from the EPSRC. Dr Emil Lupu is to serve as Deputy Director of the Hub and lead for the Security and Safety Theme.
Daniele Sgandurra gave an invited talk at “The Workshop on Security Frameworks“, Dipartimento di Matematica e Informatica, University of Catania, on the 1st of December 2015. The talk is entitled “Dissecting Ransomware for Fun and (Cyber-Criminals’) Profit”.
Daniele Sgandurra, Emil Lupu, ACM Computing Surveys (CSUR), Volume 48 Issue 3, Article No. 46, February 2016
Abstract: Virtualization technology enables Cloud providers to efficiently use their computing services and resources. Even if the benefits in terms of performance, maintenance, and cost are evident, however, virtualization has also been exploited by attackers to devise new ways to compromise a system. To address these problems, research security solutions have evolved considerably over the years to cope with new attacks and threat models. In this work, we review the protection strategies proposed in the literature and show how some of the solutions have been invalidated by new attacks, or threat models, that were previously not considered. The goal is to show the evolution of the threats, and of the related security and trust assumptions, in virtualized systems that have given rise to complex threat models and the corresponding sophistication of protection strategies to deal with such attacks. We also categorize threat models, security and trust assumptions, and attacks against a virtualized system at the different layers—in particular, hardware, virtualization, OS, and application.
Attack graphs are a powerful tool for security risk assessment by analysing network vulnerabilities and the paths attackers can use to compromise valuable network resources. The uncertainty about the attacker’s behaviour and capabilities make Bayesian networks suitable to model attack graphs to perform static and dynamic analysis. Previous approaches have focused on the formalization of traditional attack graphs into a Bayesian model rather than proposing mechanisms for their analysis. In this paper we propose to use efficient algorithms to make exact inference in Bayesian attack graphs, enabling the static and dynamic network risk assessments. To support the validity of our proposed approach we have performed an extensive experimental evaluation on synthetic Bayesian attack graphs with different topologies, showing the computational advantages in terms of time and memory use of the proposed techniques when compared to existing approaches.
Luis Muñoz-González, Daniele Sgandurra, Martín Barrere, and Emil C. Lupu: Exact Inference Techniques for the Dynamic Analysis of Attack Graphs. arXiv preprint: arXiv:1510.02427. October, 2015.
Konstantina joined Imperial College Business School as a Research Associate in 2014. Her main research interests focus on topics of IT adoption, business integration and information management. She worked on joint projects between this group and the Business School in particular on value aspects of data and adoption of cloud security services. Konstantina is now a Lecturer at School of Business and Economics, Loughborough University.