RISS

Resilient Information Systems Security

MUSKETEER: Machine learning to augment shared knowledge in federated privacy-preserving scenarios

The massive increase in data collected and stored worldwide calls for new ways to preserve privacy while still allowing data sharing among multiple data owners. Today, the lack of trusted and secure environments for data sharing inhibits data economy while legality, privacy, trustworthiness, data value and confidentiality hamper the free flow of data. By the end of the project, MUSKETEER aims to create a validated, federated, privacy-preserving machine learning platform tested on industrial data that is inter-operable, scalable and efficient enough to be deployed in real use cases. MUSKETEER aims to alleviate data sharing barriers by providing secure, scalable and […]

Label Sanitization against Label Flipping Poisoning Attacks

Andrea Paudice, Luis Muñoz-González, Emil C. Lupu. 2018. Label Sanitization against Label Flipping Poisoning Attacks. arXiv preprint arXiv:1803.00992. Many machine learning systems rely on data collected in the wild from untrusted sources, exposing the learning algorithms to data poisoning. Attackers can inject malicious data in the training dataset to subvert the learning process, compromising the performance of the algorithm producing errors in a targeted or an indiscriminate way. Label flipping attacks are a special case of data poisoning, where the attacker can control the labels assigned to a fraction of the training points. Even if the capabilities of the attacker […]

Detection of Adversarial Training Examples in Poisoning Attacks through Anomaly Detection

Andrea Paudice, Luis Muñoz-González, Andras Gyorgy, Emil C. Lupu. 2018. Detection of Adversarial Training Examples in Poisoning Attacks through Anomaly Detection. arXiv preprint arXiv:1802.03041.    Data poisoning is one of the most relevant security threats against machine learning systems, where attackers can subvert the learning process by injecting malicious samples in the training data. Recent work in adversarial machine learning has shown that the so-called optimal attack strategies can successfully poison linear classifiers, degrading the performance of the system dramatically after compromising a small fraction of the training dataset. In this paper we propose a defence mechanism to mitigate the effect […]

Towards Poisoning Deep Learning Algorithms with Back-gradient Optimization

In this work, we first extend the definition of poisoning attacks to multi-class problems. We then propose a novel poisoning algorithm based on the idea of back-gradient optimization, i.e., to compute the gradient of interest through automatic differentiation, while also reversing the learning procedure to drastically reduce the attack complexity. Compared to current poisoning strategies, our approach is able to target a wider class of learning algorithms, trained with gradient-based procedures, including neural networks and deep learning architectures. We empirically evaluate its effectiveness on several application examples, including spam filtering, malware detection, and handwritten digit recognition. We finally show that, […]