IoT

Responding to Attacks and Compromise at the Edge (RACE)

IoT systems evolve dynamically and are increasingly used in critical applications. Understanding how to maintain the operation of the system when systems have been partially compromised is therefore of critical importance. This requires to continuously assess the risk to other parts of the system, determine the impact of the compromise and to select appropriate mitigation strategies to respond to the attack. The ability to cope with dynamic system changes is a key and significant challenge in achieving these objectives.

RACE is articulated into four broad themes of work: understanding attacks and mitigation strategies, maintaining an adequate representation of risk to the other parts of the system by understanding how attacks can evolve and propagate, understanding the impact of the compromise upon the functionality of the system and selecting countermeasure strategies taking into account trade-offs between minimising disruption to the system operation and functionality provided and minimising the risk to the other parts of the system.

Robustness and Transferability of Universal Attacks on Compressed Models

A.G. Matachana, K.T. Co, L. Muñoz-González, D. Martinez, E.C. Lupu. Robustness and Transferability of Universal Attacks on Compressed Models. AAAI 2021 Workshop: Towards Robust, Secure and Efficient Machine Learning. 2021.

Neural network compression methods like pruning and quantization are very effective at efficiently deploying Deep Neural Networks (DNNs) on edge devices. However, DNNs remain vulnerable to adversarial examples-inconspicuous inputs that are specifically designed to fool these models. In particular, Universal Adversarial Perturbations (UAPs), are a powerful class of adversarial attacks which create adversarial perturbations that can generalize across a large set of inputs. In this work, we analyze the effect of various compression techniques to UAP attacks, including different forms of pruning and quantization. We test the robustness of compressed models to white-box and transfer attacks, comparing them with their uncompressed counterparts on CIFAR-10 and SVHN datasets. Our evaluations reveal clear differences between pruning methods, including Soft Filter and Post-training Pruning. We observe that UAP transfer attacks between pruned and full models are limited, suggesting that the systemic vulnerabilities across these models are different. This finding has practical implications as using different compression techniques can blunt the effectiveness of black-box transfer attacks. We show that, in some scenarios, quantization can produce gradient-masking, giving a false sense of security. Finally, our results suggest that conclusions about the robustness of compressed models to UAP attacks is application dependent, observing different phenomena in the two datasets used in our experiments.

Object Removal Attacks on LiDAR-based 3D Object Detectors

LiDARs play a critical role in Autonomous Vehicles’ (AVs) perception and their safe operations. Recent works have demonstrated that it is possible to spoof LiDAR return signals to elicit fake objects. In this work we demonstrate how the same physical capabilities can be used to mount a new, even more dangerous class of attacks, namely Object Removal Attacks (ORAs). ORAs aim to force 3D object detectors to fail. We leverage the default setting of LiDARs that record a single return signal per direction to perturb point clouds in the region of interest (RoI) of 3D objects. By injecting illegitimate points behind the target object, we effectively shift points away from the target objects’ RoIs. Our initial results using a simple random point selection strategy show that the attack is effective in degrading the performance of commonly used 3D object detection models.

Z. Hau, K.T. Co, S. Demetriou, E.C. Lupu. Object Removal Attacks on LiDAR-based 3D Object Detectors. Automotive and Autonomous Vehicle Security (AutoSec) Workshop @ NDSS Symposium 2021.

Paper

Analyzing the Viability of UAV Missions Facing Cyber Attacks

With advanced video and sensing capabilities, un-occupied aerial vehicles (UAVs) are increasingly being usedfor numerous applications that involve the collaboration andautonomous operation of teams of UAVs. Yet such vehiclescan be affected by cyber attacks, impacting the viability oftheir missions. We propose a method to conduct mission via-bility analysis under cyber attacks for missions that employa team of several UAVs that share a communication network.We apply our method to a case study of a survey mission ina wildfire firefighting scenario. Within this context, we showhow our method can help quantify the expected missionperformance impact from an attack and determine if themission can remain viable under various attack situations.Our method can be used both in the planning of themission and for decision making during mission operation.Our approach to modeling attack progression and impactanalysis with Petri nets is also more broadly applicable toother settings involving multiple resources that can be usedinterchangeably towards the same objective.

J. Soikkeli, C. Perner and E. Lupu, “Analyzing the Viability of UAV Missions Facing Cyber Attacks,” in 2021 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), Vienna, Austria, 2021 pp. 103-112.
doi: 10.1109/EuroSPW54576.2021.00018

SECRIS: Security Risk Assessment of IoT Environments with Attack Graph Models

IoT environments are vulnerable: many devices can be accessed physically and are not designed with security in mind. It is often impractical to patch all the vulnerabilities or to eliminate all possible threats. Unlike more traditional computing systems IoT environments bring together the physical, human and cyber aspects of a system. Each can be used to compromise the other and each can contribute towards monitoring and protecting the other.

Given the complexity of possible attacks, techniques for identifying and assessing the security risk are needed. In traditional networked environments attack graphs have been proven as a powerful tool for representing the different paths through which a system can be compromised. In this project we propose to design a new generation of attack graph models capable of describing the attack surface of modern IoT infrastructures for smart buildings. We are investigating new mechanisms to reduce the complexity of the attack graph representations and efficient algorithms for their analysis.

 

The Intel ICRI in Sustainable Connected Cities

ICRI_logoThe Intel ICRI in Sustainable Connected Cities is a joint project between Intel, Imperial College London, and University College London. Its activities are concerned with how to enhance the social, economic and environmental well being of cities by advancing compute, communication and social constructs to deliver innovations in system architecture, algorithms and societal participation.

Our work within the initiative concerns mainly the security and resilience of Wireless Sensor Networks.